Artificial Neural Networks, Machine Learning, Deep Thinking Schulung

Haupt-Reiter

Erfahrungsberichte

Artificial Neural Networks, Machine Learning, Deep Thinking

It was very interactive and more relaxed and informal than expected. We covered lots of topics in the time and the trainer was always receptive to talking more in detail or more generally about the topics and how they were related. I feel the training has given me the tools to continue learning as opposed to it being a one off session where learning stops once you've finished which is very important given the scale and complexity of the topic.

Jonathan Blease - Knowledgepool Group Ltd

Kurs Code

annmldt

Dauer

21 Stunden (usually 3 days including breaks)

Schulungsübersicht

DAY 1 - ARTIFICIAL NEURAL NETWORKS

Introduction and ANN Structure.

  • Biological neurons and artificial neurons.
  • Model of an ANN.
  • Activation functions used in ANNs.
  • Typical classes of network architectures .

Mathematical Foundations and Learning mechanisms.

  • Re-visiting vector and matrix algebra.
  • State-space concepts.
  • Concepts of optimization.
  • Error-correction learning.
  • Memory-based learning.
  • Hebbian learning.
  • Competitive learning.

Single layer perceptrons.

  • Structure and learning of perceptrons.
  • Pattern classifier - introduction and Bayes' classifiers.
  • Perceptron as a pattern classifier.
  • Perceptron convergence.
  • Limitations of a perceptrons.

Feedforward ANN.

  • Structures of Multi-layer feedforward networks.
  • Back propagation algorithm.
  • Back propagation - training and convergence.
  • Functional approximation with back propagation.
  • Practical and design issues of back propagation learning.

Radial Basis Function Networks.

  • Pattern separability and interpolation.
  • Regularization Theory.
  • Regularization and RBF networks.
  • RBF network design and training.
  • Approximation properties of RBF.

Competitive Learning and Self organizing ANN.

  • General clustering procedures.
  • Learning Vector Quantization (LVQ).
  • Competitive learning algorithms and architectures.
  • Self organizing feature maps.
  • Properties of feature maps.

Fuzzy Neural Networks.

  • Neuro-fuzzy systems.
  • Background of fuzzy sets and logic.
  • Design of fuzzy stems.
  • Design of fuzzy ANNs.

Applications

  • A few examples of Neural Network applications, their advantages and problems will be discussed.

DAY -2 MACHINE LEARNING

  • The PAC Learning Framework
    • Guarantees for finite hypothesis set – consistent case
    • Guarantees for finite hypothesis set – inconsistent case
    • Generalities
      • Deterministic cv. Stochastic scenarios
      • Bayes error noise
      • Estimation and approximation errors
      • Model selection
  • Radmeacher Complexity and VC – Dimension
  • Bias - Variance tradeoff
  • Regularisation
  • Over-fitting
  • Validation
  • Support Vector Machines
  • Kriging (Gaussian Process regression)
  • PCA and Kernel PCA
  • Self Organisation Maps (SOM)
  • Kernel induced vector space
    • Mercer Kernels and Kernel - induced similarity metrics
  • Reinforcement Learning

DAY 3 - DEEP LEARNING

This will be taught in relation to the topics covered on Day 1 and Day 2

  • Logistic and Softmax Regression
  • Sparse Autoencoders
  • Vectorization, PCA and Whitening
  • Self-Taught Learning
  • Deep Networks
  • Linear Decoders
  • Convolution and Pooling
  • Sparse Coding
  • Independent Component Analysis
  • Canonical Correlation Analysis
  • Demos and Applications

Öffentlicher Klassenraum Öffentlicher Klassenraum
Teilnehmer aus verschiedenen Organisationen. Die Themen können hier nicht angepasst werden.
Von 6490EUR
Request
Privater Klassenraum Privater Klassenraum
Die Teilnehmer sind aus einem Unternehmen. Externe Teilnehmer sind nicht erlaubt. Der Kurs ist speziell auf eine Gruppe zugeschnitten, Die Themen werden genau auf die Bedürfnisse der Teilnehmer abgestimmt.
Privater Fernkurs Privater Fernkurs
Der Anleiter und die Teilnehmer befinden sich an unterschiedlichen Orten und kommunizieren über das Internet miteinander.
Von 5840EUR
Angebot erfragen

Je mehr Teilnehmer, desto höher die Ersparnis pro Teilnehmer. Die Tabelle reflektiert den Preis pro Teilnehmer und dient zur Veranschaulichung. Die tatsächlichen Preise können jedoch abweichen.

Number of Delegates Öffentlicher Klassenraum Privater Fernkurs
1 6490EUR 5840EUR
2 3715EUR 3365EUR
3 2790EUR 2540EUR
4 2328EUR 2128EUR
Können Sie kein passendes Datum finden? Fordern Sie ein neues Kursdatum an >>
Zu teuer? Schlagen Sie einen Preis vor >>

Verwandte Kategorien


Spezialangebote

Course Discounts Newsletter

We respect the privacy of your email address. We will not pass on or sell your address to others.
You can always change your preferences or unsubscribe completely.

EINIGE UNSERER KUNDEN