Spark for Developers Schulung

Kurs Code

sparkdev

Dauer

21 hours (üblicherweise 3 Tage inklusive Pausen)

Voraussetzungen

PRE-REQUISITES

familiarity with either Java / Scala / Python language (our labs in Scala and Python)
basic understanding of Linux development environment (command line navigation / editing files using VI or nano)

Überblick

ZIELSETZUNG:

Dieser Kurs wird Apache Spark vorstellen. Die Schüler lernen, wie Spark in das Big Data Ökosystem passt und wie Spark für die Datenanalyse verwendet wird. Der Kurs behandelt die Spark-Shell für die interaktive Datenanalyse, Spark-Interna, Spark-APIs, Spark- SQL , Spark-Streaming sowie maschinelles Lernen und graphX.

PUBLIKUM:

Entwickler / Datenanalysten

Machine Translated

Schulungsübersicht

  1. Scala primer

    • A quick introduction to Scala
    • Labs : Getting know Scala
  2. Spark Basics

    • Background and history
    • Spark and Hadoop
    • Spark concepts and architecture
    • Spark eco system (core, spark sql, mlib, streaming)
    • Labs : Installing and running Spark
  3. First Look at Spark

    • Running Spark in local mode
    • Spark web UI
    • Spark shell
    • Analyzing dataset – part 1
    • Inspecting RDDs
    • Labs: Spark shell exploration
  4. RDDs

    • RDDs concepts
    • Partitions
    • RDD Operations / transformations
    • RDD types
    • Key-Value pair RDDs
    • MapReduce on RDD
    • Caching and persistence
    • Labs : creating & inspecting RDDs;   Caching RDDs
  5. Spark API programming

    • Introduction to Spark API / RDD API
    • Submitting the first program to Spark
    • Debugging / logging
    • Configuration properties
    • Labs : Programming in Spark API, Submitting jobs
  6. Spark SQL

    • SQL support in Spark
    • Dataframes
    • Defining tables and importing datasets
    • Querying data frames using SQL
    • Storage formats : JSON / Parquet
    • Labs : Creating and querying data frames; evaluating data formats
  7. MLlib

    • MLlib intro
    • MLlib algorithms
    • Labs : Writing MLib applications
  8. GraphX

    • GraphX library overview
    • GraphX APIs
    • Labs : Processing graph data using Spark
  9. Spark Streaming

    • Streaming overview
    • Evaluating Streaming platforms
    • Streaming operations
    • Sliding window operations
    • Labs : Writing spark streaming applications
  10. Spark and Hadoop

    • Hadoop Intro (HDFS / YARN)
    • Hadoop + Spark architecture
    • Running Spark on Hadoop YARN
    • Processing HDFS files using Spark
  11. Spark Performance and Tuning

    • Broadcast variables
    • Accumulators
    • Memory management & caching
  12. Spark Operations

    • Deploying Spark in production
    • Sample deployment templates
    • Configurations
    • Monitoring
    • Troubleshooting

Erfahrungsberichte

★★★★★
★★★★★

Verwandte Kategorien

EINIGE UNSERER KUNDEN

is growing fast!

We are looking to expand our presence in Germany!

As a Business Development Manager you will:

  • expand business in Germany
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!