Schulungsübersicht
Einführung in angewandtes Machine Learning
- Statistisches Lernen vs. Maschinelles Lernen
- Iteration und Bewertung
- Bias-Varianz-Abgleich
Machine Learning mit Scala
- Auswahl von Bibliotheken
- Zusätzliche Werkzeuge
Regression
- Lineare Regression
- Verallgemeinerungen und Nichtlinearität
- Übungen
Klassifikation
- Bayessche Auffrischung
- Naiver Bayes
- Logistische Regression
- K-Nächste Nachbarn
- Übungen
Kreuzvalidierung und Resampling
- Ansätze zur Kreuzvalidierung
- Bootstrap
- Übungen
Unüberwachtes Lernen
- K-Mittel-Clustering
- Beispiele
- Herausforderungen beim unüberwachten Lernen und über K-means hinaus
Voraussetzungen
Kenntnisse der Programmiersprache Java/Scala. Grundlegende Vertrautheit mit Statistik und linearer Algebra wird empfohlen.
Erfahrungsberichte (2)
das ML-Ekosystem, nicht nur MLFlow sondern auch Optuna, Hyperopt, Docker und Docker-Compose
Guillaume GAUTIER - OLEA MEDICAL
Kurs - MLflow
Maschinelle Übersetzung
Ich habe es sehr genossen, an der Kubeflow Ausbildung teilzunehmen, die ferngesteuert durchgeführt wurde. Diese Ausbildung ermöglichte mir, mein Wissen zu AWS-Diensten, K8s und allen devOps-Tools rund um Kubeflow zu festigen, was die notwendige Grundlage ist, um das Thema angemessen anzugehen. Ich möchte Malawski Marcin für seine Geduld und Professionalität bei der Ausbildung sowie für Tipps zur besten Praxis danken. Malawski attackiert das Thema aus verschiedenen Perspektiven, mit unterschiedlichen Bereitstellungstools Ansible, EKS kubectl, Terraform. Jetzt bin ich definitiv überzeugt, dass ich mich auf dem richtigen Anwendungsgebiet befinde.
Guillaume Gautier - OLEA MEDICAL | Improved diagnosis for life TM
Kurs - Kubeflow
Maschinelle Übersetzung