Machine Learning Schulungen

Machine Learning Schulungen

Lokale, von einem Ausbilder geleitete Live Machine Learning (ML) Trainingskurse demonstrieren durch praktische Übungen, wie man maschinelle Lerntechniken und Werkzeuge anwendet, um reale Probleme in verschiedenen Branchen zu lösen. NobleProg ML Kurse decken verschiedene Programmiersprachen und Frameworks, einschließlich Python, R-Sprache und Matlab. Machine-Learning-Kurse werden für eine Reihe von Branchenanwendungen angeboten, einschließlich Finanzen, Bankwesen und Versicherungen und decken die Grundlagen des maschinellen Lernens sowie fortgeschrittenere Ansätze wie Deep Learning ab. Machine Learning Training ist als "Live-Training vor Ort" oder "Fern-Live-Training" verfügbar. Onsite Live Training kann vor Ort bei Kunden durchgeführt werden Deutschland oder in NobleProg Corporate Trainingszentren in Deutschland . Remote-Live-Training wird über einen interaktiven Remote-Desktop durchgeführt. NobleProg - Ihr lokaler Trainingsanbieter

Machine Translated

Erfahrungsberichte

★★★★★
★★★★★

Machine Learning (ML) Kurspläne

Name des Kurses
Dauer
Überblick
Name des Kurses
Dauer
Überblick
7 Stunden
This instructor-led, live training in Deutschland (online or onsite) is aimed at software engineers or anyone who wish to learn how to use Vertex AI to perform and complete machine learning activities.

By the end of this training, participants will be able to:

- Understand how Vertex AI works and use it as a machine learning platform.
- Learn about machine learning and NLP concepts.
- Know how to train and deploy machine learning models using Vertex AI.
7 Stunden
AlphaFold ist ein Artificial Intelligence (AI) System, das die Proteinstrukturen voraussagt. Es wird von Alphabet’s/Google’s DeepMind als ein tiefer Lernsystem entwickelt, das genau 3D-Modelle von Proteinstrukturen vorhersagen kann.

Dieser Instructor-leitet, Live-Training (online oder online) richtet sich an Biologen, die verstehen wollen, wie AlphaFold arbeiten und verwenden AlphaFold Modelle als Leitfaden in ihren experimentellen Studien.

Am Ende dieser Ausbildung können die Teilnehmer:

Sie verstehen die Grundprinzipien von AlphaFold. Lernen Sie, wie AlphaFold funktioniert. Erfahren Sie, wie Sie AlphaFold Prognosen und Ergebnisse interpretieren.

Format des Kurses

Interaktive Unterricht und Diskussion. Viele Übungen und Übungen. Hand-on Implementierung in einem Live-Lab-Umfeld.

Kursanpassungsoptionen

Um eine benutzerdefinierte Ausbildung für diesen Kurs zu beantragen, wenden Sie sich bitte an uns, um zu arrangieren.
14 Stunden
Waikato Environment for Knowledge Analysis (Weka) ist eine Open-Source Data Mining Visualization-Software. Es bietet eine Sammlung von Maschinenlern-Algorithmen für Datenherstellung, Klassifizierung, Klusterung und andere Data Mining-Aktivitäten.

Dieser Instructor-leitet, Live-Training (online oder on-site) richtet sich an Datenanalytiker und Datenwissenschaftler, die verwenden möchten Weka für die Erfüllung von Data Mining Aufgaben.

Am Ende dieser Ausbildung können die Teilnehmer:

Installieren und konfigurieren Weka Verständnis der Weka Umwelt und des Arbeitsplatzes. Durchführen Sie Datenmining Aufgaben mit Weka.

Format des Kurses

Interaktive Unterricht und Diskussion. Viele Übungen und Übungen. Hand-on Implementierung in einem Live-Lab-Umfeld.

Kursanpassungsoptionen

Um eine benutzerdefinierte Ausbildung für diesen Kurs zu beantragen, wenden Sie sich bitte an uns, um zu arrangieren.
14 Stunden
Ziel dieses Kurses ist es, eine grundlegende Kompetenz in der Anwendung Machine Learning Methoden in der Praxis zu bieten. Durch die Verwendung der Programmiersprache und ihrer verschiedenen Bibliotheken und auf der Grundlage einer Vielzahl praktischer Beispiele lehrt dieser Kurs, wie man die wichtigsten Baublöcke von Machine Learning verwendet, wie man Datenmodellierungsentscheidungen macht, die Ergebnisse der Algorithmen interpretiert und die Ergebnisse validiert.

Unser Ziel ist es, Ihnen die Fähigkeiten zu vermitteln, die grundlegendsten Tools aus dem Toolbox vertrauensvoll zu verstehen und zu verwenden und die gemeinsamen Fälle der Anwendungen zu vermeiden.
21 Stunden
In diesem instruierten Live-Training lernen die Teilnehmer die relevantesten und fortschrittlichsten maschinellen Lerntechniken in Python kennen, während sie eine Reihe von Demo-Anwendungen mit Bild-, Musik-, Text- und Finanzdaten erstellen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Implementieren Sie maschinelle Lernalgorithmen und Techniken zur Lösung komplexer Probleme Wenden Sie intensives Lernen und halbüberwachtes Lernen auf Anwendungen mit Bild-, Musik-, Text- und Finanzdaten an Push Python-Algorithmen auf ihr maximales Potenzial Verwenden Sie Bibliotheken und Pakete wie NumPy und Theano Publikum Entwickler Analysten Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
28 Stunden
Ziel dieses Kurses ist es, allgemeine Kenntnisse in der Anwendung von maschinellen Lernmethoden in der Praxis zu vermitteln. Durch den Einsatz der Programmiersprache Python und ihrer verschiedenen Bibliotheken und anhand einer Vielzahl von Praxisbeispielen vermittelt dieser Kurs, wie man die wichtigsten Bausteine des maschinellen Lernens nutzt, wie man Datenmodellierungsentscheidungen trifft, die Ausgänge der Algorithmen und Validierung der Ergebnisse.

Unser Ziel ist es, Ihnen die Fähigkeiten zu vermitteln, die grundlegendsten Werkzeuge aus dem Werkzeugkasten Maschinenlerntechnik sicher zu verstehen und zu nutzen und die üblichen Fallstricke von Datenwissenschaften zu vermeiden.
28 Stunden
Dies ist ein 4-Tage-Kurs, mit dem AI und seine Anwendung mit der Programmiersprache eingeführt werden. Es gibt eine Option, einen zusätzlichen Tag zu haben, um ein AI-Projekt zu unternehmen, um diesen Kurs zu beenden.
21 Stunden
Tiefe Reinforcement Learning verweist auf die Fähigkeit eines "artificiellen Agents", durch Prozess- und Fehler und Belohungen zu lernen. Ein künstlicher Agent cielt, ein menschliches ' zu emuliern; die Möglichkeit, Wissen auf eigenen und konstruieren, direkt aus Roh-Eingaben wie Vision zu erhalten. Um die Verstärkung von Lernen zu erfahren, werden die tiefe Lern- und Neurannetzwerken verwendet. Die Reforcement-Lern ist unterschiedlich von Maschine-Lern und vertraut nicht auf überwachsene und unübersichtliche Lernbedingungen.

In diesem Instruktor lebende Ausbildung lernen Teilnehmer die Grundlagen der Tiefe Reinforcement Learning, während sie durch die Schaffung eines Deep Learning Agents schritten.

Bis Ende dieser Ausbildung werden Teilnehmer:

Verstehen Sie die Schlüsselkonzepte hinter Tiefe Reinforcement Learning und können sie von Machine Learning Erweiterte Reinforcement Learning Algoritmen unterscheiden, um echte Weltproblemen zu lösen Bauen eine Deep Learning Agent

Audienz

Entwickler Datenwissenschaftler

Form des Kurses

Teilleistung, Teildiskussion, Übungen und schwere Händliche Praxis
28 Stunden
Machine Learning ist eine Branche der künstlichen Intelligenz, in der Computer die Fähigkeit haben, ohne ausdrücklich programmiert zu werden.

Die tiefe Lernen ist ein Unterfeld des Maschinenlernen, das Methoden verwendet, die auf Lerndaten-Repräsentationen und Strukturen wie neurale Netzwerke basieren.

Python ist eine hochwertige Programmiersprache berühmt für ihre klaren Syntax und Code Lesbarkeit.

In diesem Instructor-leitet, Live-Training, lernen die Teilnehmer, wie die Implementierung von tiefen Lernmodellen für Telekom mit Python wie sie durch die Schaffung eines tiefen Lern-Kredit-Risiko-Modell.

Am Ende dieser Ausbildung können die Teilnehmer:

Sie verstehen die grundlegenden Konzepte des tiefen Lernens. Lernen Sie die Anwendungen und Anwendungen des tiefen Lernens in Telekom. Nutzen Python, Keras und TensorFlow, um tiefe Lernmodelle für Telecom zu erstellen. Erstellen Sie Ihr eigenes Deep Learning Customer Churn Prognose-Modell mit Python.

Format des Kurses

Interaktive Unterricht und Diskussion. Viele Übungen und Übungen. Hand-on Implementierung in einem Live-Lab-Umfeld.

Kursanpassungsoptionen

Um eine benutzerdefinierte Ausbildung für diesen Kurs zu beantragen, wenden Sie sich bitte an uns, um zu arrangieren.
14 Stunden
Embedding Projector ist eine Open-Source-Webanwendung zur Visualisierung der Daten, die zum Trainieren von maschinellen Lernsystemen verwendet werden Erstellt von Google, ist es ein Teil von TensorFlow Dieses instruierte Live-Training stellt die Konzepte hinter Embedding Projector vor und führt die Teilnehmer durch die Einrichtung eines Demo-Projekts Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Erfahren Sie, wie Daten von maschinellen Lernmodellen interpretiert werden Navigieren Sie durch 3D- und 2D-Ansichten von Daten, um zu verstehen, wie ein maschineller Lernalgorithmus sie interpretiert Verstehen Sie die Konzepte hinter Embedding und ihre Rolle bei der Darstellung mathematischer Vektoren für Bilder, Wörter und Zahlen Erkunden Sie die Eigenschaften einer bestimmten Einbettung, um das Verhalten eines Modells zu verstehen Wenden Sie Embedding Project auf reale Anwendungsfälle an, wie zum Beispiel das Erstellen eines Song-Empfehlungssystems für Musikliebhaber Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
7 Stunden
Dieser Kurs wurde für Führungskräfte, Lösungsarchitekten, Innovationsbeamte, CTOs, Softwarearchitekten und alle, die an einem Überblick über angewandte künstliche Intelligenz und die nächste Prognose für ihre Entwicklung interessiert sind.
7 Stunden
Dieser Kurs richtet sich an Personen, die grundlegende Techniken des Machine Learning in praktischen Anwendungen anwenden möchten.

Publikum

Datenwissenschaftler und Statistiker, die mit maschinellem Lernen vertraut sind und wissen, wie man R programmiert. Der Schwerpunkt dieses Kurses liegt auf den praktischen Aspekten der Daten- / Modellvorbereitung, Ausführung, Post-Hoc-Analyse und Visualisierung. Ziel ist es, Teilnehmern, die an der Anwendung der Methoden bei der Arbeit interessiert sind, eine praktische Einführung in das maschinelle Lernen zu geben

Branchenspezifische Beispiele sollen das Training für das Publikum relevant machen.
14 Stunden
Der Übungskurs ist für alle diejenigen gedacht, die "Machine Learning" in praktischen Applikationen anwenden möchten

Teilnehmer

Dieser Kurs ist für Data Scientists und Statistiker, die Grundkenntnisse in Statistik haben und wissen, wie man R programmiert. Der Schwerpunkt des Kurses liegt auf dem praktischen Aspekt von Daten/Modell-Vorbereitung, Execution, post hoc Analyse und Visualisierung.

Das Ziel ist es, den Teilnehmern praktische Kenntnisse im Maschinellen Lernen zu vermitteln.

Bereichsspezifische Beispiele erhöhen die Relevanz der Schulung für die Teilnehmer.
14 Stunden
Ziel dieses Kurses ist es, grundlegende Kenntnisse in der Anwendung von Methoden des Machine Learning in der Praxis zu vermitteln. Anhand der R - Programmierplattform und ihrer verschiedenen Bibliotheken sowie anhand einer Vielzahl praktischer Beispiele wird in diesem Kurs die Verwendung der wichtigsten Bausteine des Machine Learning , das Treffen von Datenmodellierungsentscheidungen sowie die Interpretation der Ergebnisse der Algorithmen und erläutert validieren Sie die Ergebnisse.

Unser Ziel ist es, Sie in die Lage zu versetzen, die grundlegendsten Tools aus der Toolbox für Machine Learning sicher zu verstehen und zu verwenden und die üblichen Fallstricke der Data Science Anwendungen zu vermeiden.
21 Stunden
Das künstliche neuronale Netz ist ein Computerdatenmodell, das bei der Entwicklung von Artificial Intelligence (AI) Systemen Artificial Intelligence (AI) verwendet wird, die "intelligente" Aufgaben ausführen können. Neural Networks werden häufig in ML-Anwendungen ( Machine Learning ) verwendet, bei denen es sich um eine Implementierung von AI handelt. Deep Learning ist eine Teilmenge von ML.
21 Stunden
Dieser Kurs führt in Methoden des maschinellen Lernens in Robotikanwendungen ein.

Es gibt einen umfassenden Überblick über bestehende Methoden, Motivationen und Hauptideen im Kontext der Mustererkennung.

Nach einem kurzen theoretischen Hintergrund führen die Teilnehmer einfache Übungen mit Open Source (normalerweise R) oder einer anderen gängigen Software durch.
21 Stunden
MATLAB is a numerical computing environment and programming language developed by MathWorks.
14 Stunden
Ziel dieses Kurses ist es, grundlegende Kenntnisse in der Anwendung von Methoden des Machine Learning in der Praxis zu vermitteln. In diesem Kurs wird anhand der Programmiersprache Scala und ihrer verschiedenen Bibliotheken anhand einer Vielzahl von praktischen Beispielen gezeigt, wie die wichtigsten Bausteine des Machine Learning , wie Datenmodellierungsentscheidungen getroffen, die Ergebnisse der Algorithmen interpretiert werden und validieren Sie die Ergebnisse.

Unser Ziel ist es, Sie in die Lage zu versetzen, die grundlegendsten Tools aus der Toolbox für Machine Learning sicher zu verstehen und zu verwenden und die üblichen Fallstricke der Data Science Anwendungen zu vermeiden.
14 Stunden
R ist eine Open-Source-freie Programmiersprache für statistische Computing, Datenanalyse und Grafik. Die Forschung wird von einer wachsenden Anzahl von Managern und Datenanalytikern innerhalb von Unternehmen und Akademien verwendet. R verfügt über eine breite Palette von Paketen für die Datenmining.
21 Stunden
PredictionIO ist ein Open-Source-Server für Machine Learning der auf dem neuesten Open-Source-Stack aufbaut.

Publikum

Dieser Kurs richtet sich an Entwickler und Datenwissenschaftler, die Predictive Engines für jede maschinelle Lernaufgabe erstellen möchten.
35 Stunden
Dieser Kurs wurde für Personen entwickelt, die noch keine Erfahrung mit Wahrscheinlichkeit und Statistik haben .
21 Stunden
Der Kurs richtet sich an diejenigen, die ein alternatives Programm zum kommerziellen MATLAB-Paket kennenlernen möchten Das dreitägige Training bietet umfassende Informationen über die Bewegung in der Umwelt und die Durchführung des OCTAVE-Pakets für Datenanalyse und technische Berechnungen Die Trainingsempfänger sind Anfänger, aber auch diejenigen, die das Programm kennen und ihr Wissen systematisieren und ihre Fähigkeiten verbessern möchten Kenntnisse in anderen Programmiersprachen sind nicht erforderlich, erleichtern aber den Lernenden den Erwerb von Wissen Der Kurs zeigt Ihnen, wie Sie das Programm in vielen praktischen Beispielen verwenden .
21 Stunden
Dieser Kurs richtet sich an Personen, die Machine Learning in praktischen Anwendungen für ihr Team anwenden möchten. Die Schulung befasst sich nicht mit technischen Aspekten und dreht sich um grundlegende Konzepte und deren geschäftliche / betriebliche Anwendungen.

Zielgruppe

- Investoren und KI-Unternehmer
- Manager und Ingenieure, deren Unternehmen in den KI-Raum vordringt
- Business & Investoren
7 Stunden
Snorkel ist ein System zum schnellen Erstellen, Modellieren und Verwalten von Trainingsdaten Es konzentriert sich auf die beschleunigte Entwicklung von strukturierten oder "dunklen" Datenextraktionsanwendungen für Domänen, in denen große beschriftete Trainingssätze nicht verfügbar oder leicht zu erhalten sind In diesem instruierten Live-Training lernen die Teilnehmer Techniken zum Extrahieren von Werten aus unstrukturierten Daten wie Text, Tabellen, Zahlen und Bildern durch Modellierung von Trainingsdaten mit Snorkel kennen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Programmatische Erstellung von Trainingssätzen zur Kennzeichnung von umfangreichen Trainingssätzen Trainiere hochwertige Endmodelle, indem du zuerst laute Trainingssätze modellierst Verwenden Sie Snorkel, um schwache Überwachungstechniken zu implementieren und die Datenprogrammierung auf schwach überwachte Maschinenlernsysteme anzuwenden Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
14 Stunden
Encog ist ein Open Source-Framework zum maschinellen Lernen für Java undNet In diesem instruierten Live-Training lernen die Teilnehmer fortgeschrittene Techniken des maschinellen Lernens kennen, um präzise neuronale Vorhersagemodelle zu erstellen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Implementieren Sie verschiedene Optimierungstechniken für neuronale Netzwerke, um die Unter- und Überanpassung zu beheben Verstehen und wählen Sie aus einer Reihe von neuronalen Netzwerkarchitekturen Implementieren Sie überwachte Feed-Forward- und Feedback-Netzwerke Publikum Entwickler Analysten Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
14 Stunden
Encog ist ein Open Source-Framework zum maschinellen Lernen für Java undNet In diesem instruierten Live-Training lernen die Teilnehmer, wie sie mithilfe von ENCOG verschiedene neuronale Netzwerkkomponenten erstellen können Realworld-Fallstudien werden diskutiert und maschinensprachliche Lösungen für diese Probleme werden untersucht Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Bereiten Sie Daten für neuronale Netze unter Verwendung des Normalisierungsprozesses vor Implementieren Sie Feed-Forward-Netzwerke und Fortpflanzungs-Trainingsmethoden Implementieren Sie Klassifizierungs- und Regressionsaufgaben Modellieren und trainieren Sie neurale Netzwerke mithilfe der GUI-basierten Workbench von Encog Integrieren Sie die neuronale Netzwerkunterstützung in Realworld-Anwendungen Publikum Entwickler Analysten Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
21 Stunden
In diesem instruierten Live-Training werden die Teilnehmer lernen, wie sie das richtige maschinelle Lernen und NLP-Techniken (Natural Language Processing) einsetzen, um aus textbasierten Daten Nutzen zu ziehen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Lösen Sie textbasierte Probleme der Datenwissenschaft mit qualitativ hochwertigem, wiederverwendbarem Code Wenden Sie verschiedene Aspekte von scikitlearn an (Klassifikation, Clustering, Regression, Dimensionalitätsreduktion), um Probleme zu lösen Erstellen Sie effektive maschinelle Lernmodelle mit textbasierten Daten Erstellen Sie ein Dataset und extrahieren Sie Features aus unstrukturiertem Text Visualisieren Sie Daten mit Matplotlib Erstellen und bewerten Sie Modelle, um Einblicke zu gewinnen Beheben Sie Textcodierungsfehler Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
14 Stunden
In diesem instruierten Live-Training lernen die Teilnehmer, wie sie den Technologie-Stack von iOS Machine Learning (ML) nutzen können, während sie die Erstellung und Bereitstellung einer mobilen iOS-App durchlaufen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Erstellen Sie eine mobile App, die Bildverarbeitung, Textanalyse und Spracherkennung unterstützt Greifen Sie auf vortrainierte ML-Modelle zur Integration in iOS-Apps zu Erstellen Sie ein benutzerdefiniertes ML-Modell Fügen Sie Siri Voice-Unterstützung für iOS-Apps hinzu Verstehen und verwenden Sie Frameworks wie CoreML, Vision, CoreGraphics und GamePlayKit Verwenden Sie Sprachen und Tools wie Python, Keras, Caffee, Tensorflow, Scikit lernen, libsvm, Anaconda und Spyder Publikum Entwickler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
28 Stunden
In diesem von Lehrern geleiteten Live-Training lernen die Teilnehmer, wie sie Techniken und Werkzeuge des maschinellen Lernens anwenden, um reale Probleme in der Bankenbranche zu lösen. Als Programmiersprache wird R verwendet.

Die Teilnehmer lernen zunächst die wichtigsten Prinzipien und setzen dann ihr Wissen in die Praxis um, indem sie ihre eigenen Modelle für maschinelles Lernen erstellen und sie für die Durchführung einer Reihe von Live-Projekten verwenden.

Publikum

- Entwickler
- Datenwissenschaftler
- Bankfachleute mit technischem Hintergrund

Format des Kurses

- Teilvorlesung, Teildiskussion, Übungen und viel praktisches Üben
21 Stunden
Machine Learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Python is a programming language famous for its clear syntax and readability. It offers an excellent collection of well-tested libraries and techniques for developing machine learning applications.

In this instructor-led, live training, participants will learn how to apply machine learning techniques and tools for solving real-world problems in the banking industry.

Participants first learn the key principles, then put their knowledge into practice by building their own machine learning models and using them to complete a number of team projects.

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice

Last Updated:

Zukünftige Machine Learning Kurse

Machine Learning (ML) Schulung, Machine Learning boot camp, Machine Learning Abendkurse, Machine Learning Wochenendkurse, Machine Learning (ML) Kurs, Machine Learning Training, Machine Learning (ML) Seminar, ML (Machine Learning) Seminare, Machine Learning (ML) Privatkurs, Machine Learning Coaching, Machine Learning (ML) Lehrer

Sonderangebote

Sonderangebote Newsletter

We respect the privacy of your email address. We will not pass on or sell your address to others.
You can always change your preferences or unsubscribe completely.

EINIGE UNSERER KUNDEN

is growing fast!

We are looking for a good mixture of IT and soft skills in Germany!

As a NobleProg Trainer you will be responsible for:

  • delivering training and consultancy Worldwide
  • preparing training materials
  • creating new courses outlines
  • delivering consultancy
  • quality management

At the moment we are focusing on the following areas:

  • Statistic, Forecasting, Big Data Analysis, Data Mining, Evolution Alogrithm, Natural Language Processing, Machine Learning (recommender system, neural networks .etc...)
  • SOA, BPM, BPMN
  • Hibernate/Spring, Scala, Spark, jBPM, Drools
  • R, Python
  • Mobile Development (iOS, Android)
  • LAMP, Drupal, Mediawiki, Symfony, MEAN, jQuery
  • You need to have patience and ability to explain to non-technical people

To apply, please create your trainer-profile by going to the link below:

Apply now!

This site in other countries/regions