Machine Learning Schulungen

Machine Learning Schulungen

Lokale, von einem Ausbilder geleitete Live Machine Learning (ML) Trainingskurse demonstrieren durch praktische Übungen, wie man maschinelle Lerntechniken und Werkzeuge anwendet, um reale Probleme in verschiedenen Branchen zu lösen. NobleProg ML Kurse decken verschiedene Programmiersprachen und Frameworks, einschließlich Python, R-Sprache und Matlab. Machine-Learning-Kurse werden für eine Reihe von Branchenanwendungen angeboten, einschließlich Finanzen, Bankwesen und Versicherungen und decken die Grundlagen des maschinellen Lernens sowie fortgeschrittenere Ansätze wie Deep Learning ab. Machine Learning Training ist als "Live-Training vor Ort" oder "Fern-Live-Training" verfügbar. Onsite Live Training kann vor Ort bei Kunden durchgeführt werden Deutschland oder in NobleProg Corporate Trainingszentren in Deutschland . Remote-Live-Training wird über einen interaktiven Remote-Desktop durchgeführt. NobleProg - Ihr lokaler Trainingsanbieter

Erfahrungsberichte

★★★★★
★★★★★

Machine Learning Kurspläne

CodeNameDauerÜbersicht
aiintArtificial Intelligence Overview7 StundenDieser Kurs richtet sich an Manager, Lösungsarchitekten, Innovationsbeauftragte, CTOs, Software-Architekten und alle, die sich für einen Überblick über angewandte künstliche Intelligenz und die nächste Prognose für ihre Entwicklung interessieren.
tensorflowservingTensorFlow Serving7 StundenTensorFlow Serving ist ein System, mit dem Machine-Learning-Modelle (ML) in der Produktion eingesetzt werden können In diesem instruierten Live-Training lernen die Teilnehmer, wie sie TensorFlow Serving konfigurieren und einsetzen, um ML-Modelle in einer Produktionsumgebung bereitzustellen und zu verwalten Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Trainieren, exportieren und bedienen Sie verschiedene TensorFlow-Modelle Testen und implementieren Sie Algorithmen mithilfe einer einzigen Architektur und einer Reihe von APIs Erweitern Sie TensorFlow Serving, um andere Arten von Modellen als TensorFlow-Modelle zu bedienen Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
dlfornlpDeep Learning for NLP (Natural Language Processing)28 StundenDeep Learning für NLP ermöglicht es einer Maschine, einfache bis komplexe Sprachverarbeitung zu erlernen Zu den derzeit möglichen Aufgaben gehören die Übersetzung von Sprachen und die Erstellung von Bildunterschriften für Fotos DL (Deep Learning) ist eine Teilmenge von ML (Machine Learning) Python ist eine beliebte Programmiersprache, die Bibliotheken für Deep Learning für NLP enthält In diesem instruierten Live-Training lernen die Teilnehmer, Python-Bibliotheken für NLP (Natural Language Processing) zu verwenden, während sie eine Anwendung erstellen, die eine Reihe von Bildern verarbeitet und Untertitel generiert Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Entwerfen und kodieren Sie DL für NLP mit Python-Bibliotheken Erstellen Sie Python-Code, der eine im Wesentlichen große Sammlung von Bildern liest und Schlüsselwörter generiert Erstellen Sie Python-Code, der Untertitel aus den erkannten Keywords generiert Publikum Programmierer mit Interesse an Linguistik Programmierer, die ein Verständnis für NLP (Natural Language Processing) suchen Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
textsumText Summarization with Python14 StundenIn Python Machine Learning kann die Textzusammenfassungsfunktion den eingegebenen Text lesen und eine Textzusammenfassung erstellen Diese Funktion ist über die Befehlszeile oder als Python API / Library verfügbar Eine aufregende Anwendung ist die schnelle Erstellung von Executive-Zusammenfassungen; Dies ist besonders nützlich für Organisationen, die umfangreiche Textdaten vor dem Erstellen von Berichten und Präsentationen überprüfen müssen In diesem instruierten Live-Training lernen die Teilnehmer, mit Python eine einfache Anwendung zu erstellen, die automatisch eine Zusammenfassung des Eingabetextes generiert Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Verwenden Sie ein Befehlszeilenprogramm, das den Text zusammenfasst Entwerfen und erstellen Sie Textzusammenfassungscode mithilfe von Python-Bibliotheken Bewerten Sie drei Python-Zusammenfassungsbibliotheken: sumy 070, pysummarization 104, readless 1017 Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
undnnUnderstanding Deep Neural Networks35 StundenDieser Kurs beginnt mit konzeptuellem Wissen in neuronalen Netzen und allgemein im maschinellen Lernalgorithmus, Deep Learning (Algorithmen und Anwendungen) Teil 1 (40%) dieses Trainings konzentriert sich mehr auf die Grundlagen, hilft Ihnen aber bei der Auswahl der richtigen Technologie: TensorFlow, Caffe, Theano, DeepDrive, Keras usw Teil 2 (20%) dieser Schulung stellt Theano eine Python-Bibliothek vor, die das Schreiben von Deep-Learning-Modellen erleichtert Teil 3 (40%) des Trainings würde weitgehend auf der Tensorflow 2nd Generation API der Open-Source-Software-Bibliothek von Google für Deep Learning basieren Die Beispiele und Handsons würden alle in TensorFlow gemacht werden Publikum Dieser Kurs richtet sich an Ingenieure, die TensorFlow für ihre Deep Learning-Projekte einsetzen möchten Nach Abschluss dieses Kurses werden die Delegierten: habe ein gutes Verständnis für tiefe neuronale Netze (DNN), CNN und RNN verstehen TensorFlows Struktur und Einsatzmechanismen in der Lage sein, Installations- / Produktionsumgebungs- / Architekturaufgaben und -konfigurationen auszuführen in der Lage sein, die Codequalität zu bewerten, Debugging durchzuführen, zu überwachen in der Lage sein, fortgeschrittene Produktion wie Trainingsmodelle, Erstellung von Graphen und Protokollierung zu implementieren Aufgrund der Weite des Themas würden nicht alle Themen in einem öffentlichen Klassenzimmer mit einer Dauer von 35 Stunden behandelt Die Dauer des gesamten Kurses beträgt ca 70 Stunden und nicht 35 Stunden .
opennlpOpenNLP for Text Based Machine Learning14 StundenDie Apache OpenNLP-Bibliothek ist ein auf maschinellem Lernen basierendes Toolkit zur Verarbeitung von Text in natürlicher Sprache Es unterstützt die gebräuchlichsten NLP-Aufgaben, wie z B Spracherkennung, Tokenisierung, Satzsegmentierung, Teil-Spech-Tagging, Namensentitätsextraktion, Chunking, Parsing und Koreferenzierung In diesem instruierten Live-Training lernen die Teilnehmer, wie sie mit OpenNLP Modelle für die Verarbeitung textbasierter Daten erstellen können Als Grundlage für die Laborübungen dienen sowohl Trainingsdaten als auch kundenspezifische Datensätze Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Installieren und konfigurieren Sie OpenNLP Laden Sie bestehende Modelle herunter und erstellen Sie eigene Modelle Trainieren Sie die Modelle auf verschiedenen Sample-Datensätzen Integrieren Sie OpenNLP in vorhandene Java-Anwendungen Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
mlbankingpython_Machine Learning for Banking (with Python)21 StundenMaschinelles Lernen ist ein Zweig der künstlichen Intelligenz, in dem Computer lernen können, ohne explizit programmiert zu werden Python ist eine Programmiersprache, die für ihre klare Syntax und Lesbarkeit bekannt ist Es bietet eine hervorragende Sammlung von gut getesteten Bibliotheken und Techniken zur Entwicklung von maschinellen Lernanwendungen In diesem instruierten Live-Training werden die Teilnehmer lernen, Techniken und Werkzeuge des maschinellen Lernens anzuwenden, um reale Probleme in der Bankenbranche zu lösen Die Teilnehmer lernen zunächst die Schlüsselprinzipien kennen und setzen ihr Wissen dann in die Praxis um, indem sie ihre eigenen Modelle für maschinelles Lernen aufbauen und damit eine Reihe von Teamprojekten durchführen Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
mlbankingrMachine Learning for Banking (with R)28 StundenIn diesem instruierten Live-Training werden die Teilnehmer lernen, Techniken und Werkzeuge des maschinellen Lernens anzuwenden, um reale Probleme in der Bankenbranche zu lösen R wird als Programmiersprache verwendet Die Teilnehmer lernen zunächst die Schlüsselprinzipien kennen und setzen ihr Wissen dann in die Praxis um, indem sie ihre eigenen Modelle für maschinelles Lernen aufbauen und sie für eine Reihe von Live-Projekten verwenden Publikum Entwickler Datenwissenschaftler Banking-Profis mit einem technischen Hintergrund Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
matlabdlMatlab for Deep Learning14 StundenIn diesem instruierten Live-Training lernen die Teilnehmer, wie sie mit Matlab ein konvolutionelles neuronales Netzwerk für die Bilderkennung entwerfen, aufbauen und visualisieren können Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Erstellen Sie ein tiefes Lernmodell Automatisieren Sie die Datenbeschriftung Arbeiten Sie mit Modellen von Caffe und TensorFlowKeras Trainieren Sie Daten mit mehreren GPUs, der Cloud oder den Clustern Publikum Entwickler Ingenieure Domain-Experten Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
mliosMachine Learning on iOS14 StundenIn diesem instruierten Live-Training lernen die Teilnehmer, wie sie den Technologie-Stack von iOS Machine Learning (ML) nutzen können, während sie die Erstellung und Bereitstellung einer mobilen iOS-App durchlaufen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Erstellen Sie eine mobile App, die Bildverarbeitung, Textanalyse und Spracherkennung unterstützt Greifen Sie auf vortrainierte ML-Modelle zur Integration in iOS-Apps zu Erstellen Sie ein benutzerdefiniertes ML-Modell Fügen Sie Siri Voice-Unterstützung für iOS-Apps hinzu Verstehen und verwenden Sie Frameworks wie CoreML, Vision, CoreGraphics und GamePlayKit Verwenden Sie Sprachen und Tools wie Python, Keras, Caffee, Tensorflow, Scikit lernen, libsvm, Anaconda und Spyder Publikum Entwickler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
mlfinancerMachine Learning for Finance (with R)28 StundenMaschinelles Lernen ist ein Zweig der künstlichen Intelligenz, in dem Computer lernen können, ohne explizit programmiert zu werden R ist eine populäre Programmiersprache in der Finanzindustrie Es wird in Finanzanwendungen verwendet, die von Kernhandelsprogrammen bis zu Risikomanagementsystemen reichen In diesem instruierten Live-Training werden die Teilnehmer lernen, Techniken und Werkzeuge des maschinellen Lernens anzuwenden, um reale Probleme in der Finanzindustrie zu lösen R wird als Programmiersprache verwendet Die Teilnehmer lernen zunächst die Schlüsselprinzipien kennen und setzen ihr Wissen dann in die Praxis um, indem sie ihre eigenen Modelle für maschinelles Lernen aufbauen und damit eine Reihe von Teamprojekten durchführen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Verstehen Sie die grundlegenden Konzepte des maschinellen Lernens Erlernen Sie die Anwendungen und Anwendungen des maschinellen Lernens im Finanzwesen Entwickeln Sie eine eigene algorithmische Handelsstrategie mit maschinellem Lernen mit R Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
pythontextmlPython: Machine Learning with Text21 StundenIn diesem instruierten Live-Training werden die Teilnehmer lernen, wie sie das richtige maschinelle Lernen und NLP-Techniken (Natural Language Processing) einsetzen, um aus textbasierten Daten Nutzen zu ziehen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Lösen Sie textbasierte Probleme der Datenwissenschaft mit qualitativ hochwertigem, wiederverwendbarem Code Wenden Sie verschiedene Aspekte von scikitlearn an (Klassifikation, Clustering, Regression, Dimensionalitätsreduktion), um Probleme zu lösen Erstellen Sie effektive maschinelle Lernmodelle mit textbasierten Daten Erstellen Sie ein Dataset und extrahieren Sie Features aus unstrukturiertem Text Visualisieren Sie Daten mit Matplotlib Erstellen und bewerten Sie Modelle, um Einblicke zu gewinnen Beheben Sie Textcodierungsfehler Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
encogintroEncog: Introduction to Machine Learning14 StundenEncog ist ein Open Source-Framework zum maschinellen Lernen für Java undNet In diesem instruierten Live-Training lernen die Teilnehmer, wie sie mithilfe von ENCOG verschiedene neuronale Netzwerkkomponenten erstellen können Realworld-Fallstudien werden diskutiert und maschinensprachliche Lösungen für diese Probleme werden untersucht Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Bereiten Sie Daten für neuronale Netze unter Verwendung des Normalisierungsprozesses vor Implementieren Sie Feed-Forward-Netzwerke und Fortpflanzungs-Trainingsmethoden Implementieren Sie Klassifizierungs- und Regressionsaufgaben Modellieren und trainieren Sie neurale Netzwerke mithilfe der GUI-basierten Workbench von Encog Integrieren Sie die neuronale Netzwerkunterstützung in Realworld-Anwendungen Publikum Entwickler Analysten Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
encogadvEncog: Advanced Machine Learning14 StundenEncog ist ein Open Source-Framework zum maschinellen Lernen für Java undNet In diesem instruierten Live-Training lernen die Teilnehmer fortgeschrittene Techniken des maschinellen Lernens kennen, um präzise neuronale Vorhersagemodelle zu erstellen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Implementieren Sie verschiedene Optimierungstechniken für neuronale Netzwerke, um die Unter- und Überanpassung zu beheben Verstehen und wählen Sie aus einer Reihe von neuronalen Netzwerkarchitekturen Implementieren Sie überwachte Feed-Forward- und Feedback-Netzwerke Publikum Entwickler Analysten Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
radvmlAdvanced Machine Learning with R21 StundenIn diesem instruierten Live-Training erlernen die Teilnehmer fortgeschrittene Techniken für Maschinelles Lernen mit R, während sie eine Realworld-Anwendung erstellen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Verwenden Sie Techniken wie Hyperparameter-Tuning und Deep Learning Unüberwachte Lerntechniken verstehen und implementieren Erstellen Sie ein Modell für die Verwendung in einer größeren Anwendung Publikum Entwickler Analysten Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
pythonadvmlPython for Advanced Machine Learning21 StundenIn diesem instruierten Live-Training lernen die Teilnehmer die relevantesten und fortschrittlichsten maschinellen Lerntechniken in Python kennen, während sie eine Reihe von Demo-Anwendungen mit Bild-, Musik-, Text- und Finanzdaten erstellen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Implementieren Sie maschinelle Lernalgorithmen und Techniken zur Lösung komplexer Probleme Wenden Sie intensives Lernen und halbüberwachtes Lernen auf Anwendungen mit Bild-, Musik-, Text- und Finanzdaten an Push Python-Algorithmen auf ihr maximales Potenzial Verwenden Sie Bibliotheken und Pakete wie NumPy und Theano Publikum Entwickler Analysten Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
openfaceOpenFace: Creating Facial Recognition Systems14 StundenOpenFace ist Python und Torch-basierte Echtzeit-Gesichtserkennungssoftware, die auf der FaceNet-Forschung von Google basiert In diesem instruierten Live-Training lernen die Teilnehmer, wie sie mithilfe der OpenFace-Komponenten eine Musteranwendung für die Gesichtserkennung erstellen und bereitstellen können Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Arbeiten Sie mit OpenFace-Komponenten, einschließlich dlib, OpenVC, Torch und nn4, um Gesichtserkennung, Ausrichtung und Transformation zu implementieren Wenden Sie OpenFace auf Realworld-Anwendungen wie Überwachung, Identitätsüberprüfung, Virtual Reality, Spiele und Identifizierung von Stammkunden usw an Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
embeddingprojectorEmbedding Projector: Visualizing Your Training Data14 StundenEmbedding Projector ist eine Open-Source-Webanwendung zur Visualisierung der Daten, die zum Trainieren von maschinellen Lernsystemen verwendet werden Erstellt von Google, ist es ein Teil von TensorFlow Dieses instruierte Live-Training stellt die Konzepte hinter Embedding Projector vor und führt die Teilnehmer durch die Einrichtung eines Demo-Projekts Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Erfahren Sie, wie Daten von maschinellen Lernmodellen interpretiert werden Navigieren Sie durch 3D- und 2D-Ansichten von Daten, um zu verstehen, wie ein maschineller Lernalgorithmus sie interpretiert Verstehen Sie die Konzepte hinter Embedding und ihre Rolle bei der Darstellung mathematischer Vektoren für Bilder, Wörter und Zahlen Erkunden Sie die Eigenschaften einer bestimmten Einbettung, um das Verhalten eines Modells zu verstehen Wenden Sie Embedding Project auf reale Anwendungsfälle an, wie zum Beispiel das Erstellen eines Song-Empfehlungssystems für Musikliebhaber Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
mlfinancepythonMachine Learning for Finance (with Python)21 StundenMaschinelles Lernen ist ein Zweig der künstlichen Intelligenz, in dem Computer lernen können, ohne explizit programmiert zu werden Python ist eine Programmiersprache, die für ihre klare Syntax und Lesbarkeit bekannt ist Es bietet eine hervorragende Sammlung von gut getesteten Bibliotheken und Techniken zur Entwicklung von maschinellen Lernanwendungen In diesem instruierten Live-Training werden die Teilnehmer lernen, Techniken und Werkzeuge des maschinellen Lernens anzuwenden, um reale Probleme in der Finanzindustrie zu lösen Die Teilnehmer lernen zunächst die Schlüsselprinzipien kennen und setzen ihr Wissen dann in die Praxis um, indem sie ihre eigenen Modelle für maschinelles Lernen aufbauen und damit eine Reihe von Teamprojekten durchführen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Verstehen Sie die grundlegenden Konzepte des maschinellen Lernens Erlernen Sie die Anwendungen und Anwendungen des maschinellen Lernens im Finanzwesen Entwickeln Sie ihre eigene algorithmische Handelsstrategie mit Machine Learning mit Python Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
dlfinancewithrDeep Learning for Finance (with R)28 StundenMaschinelles Lernen ist ein Zweig der künstlichen Intelligenz, in dem Computer lernen können, ohne explizit programmiert zu werden Deep Learning ist ein Teilgebiet des maschinellen Lernens, das Methoden verwendet, die auf dem Lernen von Datendarstellungen und Strukturen wie neuronalen Netzen basieren R ist eine populäre Programmiersprache in der Finanzindustrie Es wird in Finanzanwendungen verwendet, die von Kernhandelsprogrammen bis zu Risikomanagementsystemen reichen In diesem instruierten Live-Training lernen die Teilnehmer, wie sie mithilfe von R Deep Learning-Modelle für das Finanzwesen implementieren können, während sie die Erstellung eines Deep Learning-Kursmodells für die Kursentwicklung durchlaufen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Verstehen Sie die grundlegenden Konzepte des Deep Learning Lernen Sie die Anwendungen und Anwendungen von Deep Learning im Finanzwesen Verwenden Sie R, um Deep Learning-Modelle für das Finanzwesen zu erstellen Erstellen Sie ein eigenes Deep-Learning-Kurs-Vorhersage-Modell mit R Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
dsstneAmazon DSSTNE: Build a Recommendation System7 StundenAmazon DSSTNE ist eine OpenSource-Bibliothek zum Trainieren und Implementieren von Empfehlungsmodellen Damit können Modelle mit Gewichtsmatrizen, die für eine einzelne GPU zu groß sind, auf einem einzelnen Host trainiert werden In diesem instruierten Live-Training lernen die Teilnehmer, wie DSSTNE zum Erstellen einer Empfehlungsanwendung verwendet werden kann Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Trainieren Sie ein Empfehlungsmodell mit sparse Datensätzen als Eingabe Skalieren Sie Trainings- und Vorhersagemodelle über mehrere GPUs Verteilen Sie Berechnung und Speicherung modellparallel Generieren Sie amazonike personalisierte Produktempfehlungen Stellen Sie eine produktionsbereite Anwendung bereit, die bei hohen Arbeitslasten skaliert werden kann Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
ML_LBGMachine Learning – Data science21 StundenIn dieser Präsenzschulung werden Tools für maschinelles Lernen mit Python (vorgeschlagen) vorgestellt Die Delegierten werden computerbasierte Beispiele und Fallstudienübungen durchführen .
appaiApplied AI from Scratch28 StundenThis is a 4 day course introducing AI and it's application. There is an option to have an additional day to undertake an AI project on completion of this course.
dlfortelecomwithpythonDeep Learning for Telecom (with Python)28 StundenMachine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Deep learning is a subfield of machine learning which uses methods based on learning data representations and structures such as neural networks. Python is a high-level programming language famous for its clear syntax and code readability.

In this instructor-led, live training, participants will learn how to implement deep learning models for telecom using Python as they step through the creation of a deep learning credit risk model.

By the end of this training, participants will be able to:

- Understand the fundamental concepts of deep learning
- Learn the applications and uses of deep learning in telecom
- Use Python, Keras, and TensorFlow to create deep learning models for telecom
- Build their own deep learning customer churn prediction model using Python

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
rapidminerRapidMiner for Machine Learning and Predictive Analytics14 StundenRapidMiner is an open source data science software platform for rapid application prototyping and development. It includes an integrated environment for data preparation, machine learning, deep learning, text mining, and predictive analytics.

In this instructor-led, live training, participants will learn how to use RapidMiner Studio for data preparation, machine learning, and predictive model deployment.

By the end of this training, participants will be able to:

- Install and configure RapidMiner
- Prepare and visualize data with RapidMiner
- Validate machine learning models
- Mashup data and create predictive models
- Operationalize predictive analytics within a business process
- Troubleshoot and optimize RapidMiner

Audience

- Data scientists
- Engineers
- Developers

Format of the Course

- Part lecture, part discussion, exercises and heavy hands-on practice

Note

- To request a customized training for this course, please contact us to arrange.
aicityplanningArtificial Intelligence for City Planning14 StundenWie werden Städte in Zukunft aussehen? Wie kann Künstliche Intelligenz (KI) zur Verbesserung der Stadtplanung genutzt werden? Wie kann AI dazu genutzt werden, Städte effizienter, leben- diger, sicherer und umweltfreundlicher zu machen? In diesem instruierten Live-Training (vor Ort oder remote) untersuchen wir die verschiedenen Technologien, aus denen AI besteht, sowie die Fähigkeiten und den mentalen Rahmen, die erforderlich sind, um sie für die Stadtplanung einzusetzen Wir befassen uns auch mit Tools und Vorgehensweisen zum Sammeln und Organisieren relevanter Daten für den Einsatz in KI, einschließlich Data Mining Publikum Stadtplaner Architekten Entwickler Transportbeamte Format des Kurses Teilvorlesung, Teildiskussion und eine Reihe interaktiver Übungen Hinweis Um ein maßgeschneidertes Training für diesen Kurs anzufordern, kontaktieren Sie uns bitte, um zu vereinbaren .
dlformedicineDeep Learning for Medicine14 StundenMaschinelles Lernen ist ein Zweig der künstlichen Intelligenz, in dem Computer lernen können, ohne explizit programmiert zu werden Deep Learning ist ein Teilgebiet des maschinellen Lernens, das versucht, die Funktionsweise des menschlichen Gehirns bei Entscheidungen zu imitieren Es wird mit Daten trainiert, um automatisch Lösungen für Probleme bereitzustellen Deep Learning bietet enorme Möglichkeiten für die medizinische Industrie, die auf einer Datengoldmine sitzt In diesem instruierten, Live-Training werden die Teilnehmer Nehmen Sie an einer Reihe von Diskussionen, Übungen und Fallstudien teil, um die Grundlagen des Deep Learning zu verstehen Die wichtigsten Deep-Learning-Tools und -Techniken werden evaluiert und Übungen durchgeführt, um die Teilnehmer auf die Durchführung ihrer eigenen Evaluation und Implementierung von Deep Learning-Lösungen in ihren Organisationen vorzubereiten Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Verstehen Sie die Grundlagen von Deep Learning Lernen Sie Deep Learning-Techniken und ihre Anwendungen in der Industrie Untersuchen Sie Probleme in der Medizin, die durch Deep Learning-Technologien gelöst werden können Erkunden Sie Fallstudien zum Thema Deep Learning in der Medizin Formulieren Sie eine Strategie für die Übernahme der neuesten Technologien im Deep Learning zur Lösung von Problemen in der Medizin Publikum Manager Mediziner in Führungsrollen Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen Hinweis Um ein maßgeschneidertes Training für diesen Kurs anzufordern, kontaktieren Sie uns bitte, um zu vereinbaren .
algebraformlAlgebra for Machine Learning14 StundenLineare Algebra ist ein Zweig der Mathematik, der sich mit Vektoren, Matrizen und linearen Transformationen beschäftigt Kenntnisse der linearen Algebra helfen Ingenieuren und Entwicklern, ihre maschinellen Lernfähigkeiten zu verbessern Das Verständnis der Konzepte der linearen Algebra ermöglicht es ihnen, die Prinzipien der maschinellen Lerntechniken besser zu verstehen und Probleme schneller zu lösen In diesem instruierten Live-Training werden die Teilnehmer die Grundlagen der linearen Algebra lernen, während sie ein Problem des maschinellen Lernens mithilfe linearer Algebra-Methoden lösen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Grundlegende Konzepte der linearen Algebra verstehen Erlernen Sie die Fähigkeiten der linearen Algebra für maschinelles Lernen Verwenden Sie lineare Algebra-Strukturen und Konzepte beim Arbeiten mit Daten, Bildern, Algorithmen usw Lösen Sie ein maschinelles Lernproblem mit linearer Algebra Publikum Entwickler Ingenieure Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen Hinweis Um ein maßgeschneidertes Training für diesen Kurs anzufordern, kontaktieren Sie uns bitte, um zu vereinbaren .
Nue_LBGNeural computing – Data science14 StundenDiese Schulungssitzung im Klassenzimmer enthält Präsentationen und computerbasierte Beispiele sowie Fallstudienübungen, die mit relevanten neuronalen und tiefen Netzwerkbibliotheken durchgeführt werden .
mllbgMachine Learning in business – AI/Robotics14 StundenDiese Präsenzschulung wird maschinelle Lerntechniken mit computerbasierten Beispielen und Fallbeispiel-Lösungsübungen unter Verwendung einer relevanten Programmsprache untersuchen .

Zukünftige Machine Learning Kurse

CourseSchulungsdatumKurspreis (Fernkurs / Schulungsraum)
Applied Machine Learning - DresdenDi, 2019-01-01 09:303500EUR / 4100EUR
Applied Machine Learning - BremenMi, 2019-01-02 09:303500EUR / 4100EUR
Applied Machine Learning - HamburgDo, 2019-01-03 09:303500EUR / 4100EUR
Applied Machine Learning - StuttgartMo, 2019-01-07 09:303500EUR / 4100EUR
Applied Machine Learning - Berlin Mo, 2019-01-07 09:303500EUR / 4100EUR
Machine Learning Schulung, Machine Learning boot camp, Machine Learning Abendkurse, Machine Learning Wochenendkurse, Machine Learning Kurs, Machine Learning Training, Machine Learning Seminar, Machine Learning Seminare, Machine Learning Privatkurs, Machine Learning Coaching, Machine Learning Lehrer

Sonderangebote

CourseOrtSchulungsdatumKurspreis (Fernkurs / Schulungsraum)
Comprehensive C# and .NET Application SecurityFrankfurt am MainMi, 2019-01-02 09:304725EUR / 5525EUR
Building Microservice Architectures DresdenMi, 2019-02-13 09:303150EUR / 3750EUR
Monax: Build a Smart Contract ApplicationKölnMi, 2019-03-06 09:301575EUR / 1975EUR
Introduction to the use of neural networksLeipzigDo, 2019-05-02 09:301575EUR / 1975EUR
RLeipzigMi, 2019-06-19 09:304725EUR / 5525EUR

Course Discounts Newsletter

We respect the privacy of your email address. We will not pass on or sell your address to others.
You can always change your preferences or unsubscribe completely.

EINIGE UNSERER KUNDEN

is growing fast!

We are looking to expand our presence in Germany!

As a Business Development Manager you will:

  • expand business in Germany
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!