Deep Learning Schulungen

Deep Learning Schulungen

Lokale, instruktorierte Live-Deep-Learning (DL) -Trainings demonstrieren durch praktische Übungen die Grundlagen und Anwendungen von Deep Learning und decken Themen wie tiefes maschinelles Lernen, tiefgründiges strukturiertes Lernen und hierarchisches Lernen ab Deep Learning Training ist als "Live-Training vor Ort" oder "Remote-Live-Training" verfügbar Onsite Live Training kann vor Ort bei Kunden durchgeführt werden Deutschland oder in NobleProg Corporate Trainingszentren in Deutschland Remote-Live-Training wird über einen interaktiven Remote-Desktop durchgeführt NobleProg Ihr lokaler Trainingsanbieter.

Machine Translated

Erfahrungsberichte

★★★★★
★★★★★

Deep Learning (DL) Kurspläne

Name des Kurses
Dauer
Überblick
Name des Kurses
Dauer
Überblick
21 Stunden
Überblick
Das künstliche neuronale Netz ist ein Computerdatenmodell, das bei der Entwicklung von Artificial Intelligence (AI) Systemen Artificial Intelligence (AI) verwendet wird, die "intelligente" Aufgaben ausführen können. Neural Networks werden häufig in ML-Anwendungen ( Machine Learning ) verwendet, bei denen es sich um eine Implementierung von AI handelt. Deep Learning ist eine Teilmenge von ML.
21 Stunden
Überblick
Dieser Kurs bietet einen allgemeinen Überblick über Deep Learning ohne auf bestimmte Methoden einzugehen. Es eignet sich für Personen, die Deep Learning verwenden möchten, um die Genauigkeit der Vorhersage zu verbessern.
28 Stunden
Überblick
Maschinelles Lernen ist ein Zweig der künstlichen Intelligenz, in dem Computer lernen können, ohne explizit programmiert zu werden. Deep Learning ist ein Teilgebiet des maschinellen Lernens, das Methoden verwendet, die auf dem Lernen von Datendarstellungen und Strukturen wie neuronalen Netzen basieren.
21 Stunden
Überblick
TensorFlow ist eine 2nd Generation API von Go Ogle Open - Source - Software - Bibliothek für Deep Learning . Das System wurde entwickelt, um die Forschung im Bereich maschinelles Lernen zu vereinfachen und den Übergang vom Forschungsprototyp zum Produktionssystem schnell und einfach zu gestalten.

Publikum

Dieser Kurs richtet sich an Ingenieure, die TensorFlow für ihre Deep Learning Projekte einsetzen TensorFlow

Nach Abschluss dieses Kurses werden die Teilnehmer:

- Struktur und Einsatzmechanismen von TensorFlow verstehen
- in der Lage sein, Installations- / Produktionsumgebungs- / Architekturaufgaben und -konfigurationen auszuführen
- in der Lage sein, die Codequalität zu bewerten, Fehler zu beheben und zu überwachen
- in der Lage sein, fortgeschrittene Produktionsmethoden wie Trainingsmodelle, das Erstellen von Graphen und das Protokollieren zu implementieren
28 Stunden
Überblick
In diesem Kurs wird anhand konkreter Beispiele die Anwendung von Tensor Flow zur Bilderkennung erläutert

Publikum

Dieser Kurs richtet sich an Ingenieure, die TensorFlow zur Bilderkennung einsetzen TensorFlow

Nach Abschluss dieses Kurses haben die Teilnehmer folgende Möglichkeiten:

- Struktur und Einsatzmechanismen von TensorFlow verstehen
- Installation / Produktionsumgebung / Architektur Aufgaben und Konfiguration durchführen
- Codequalität beurteilen, Debugging und Überwachung durchführen
- Implementieren Sie fortschrittliche Produktionsmethoden wie Trainingsmodelle, Erstellen von Diagrammen und Protokollieren
35 Stunden
Überblick
TensorFlow ™ ist eine Open-Source-Softwarebibliothek für die numerische Berechnung mithilfe von Datenflussdiagrammen.

SyntaxNet ist ein Framework für die Verarbeitung natürlicher Sprachen in einem neuronalen Netzwerk für TensorFlow .

Word 2Vec wird zum Lernen von Vektordarstellungen von Wörtern verwendet, die als "Worteinbettungen" bezeichnet werden. Word 2vec ist ein besonders recheneffizientes Vorhersagemodell zum Lernen von Worteinbettungen aus Rohtext. Es gibt zwei Varianten: das Continuous Bag-of- Word Modell (CBOW) und das Skip-Gram-Modell (Kapitel 3.1 und 3.2 in Mikolov et al.).

In Kombination mit SyntaxNet und Word 2Vec können Benutzer gelernte Einbettungsmodelle aus Eingaben in natürlicher Sprache generieren.

Publikum

Dieser Kurs richtet sich an Entwickler und Ingenieure, die beabsichtigen, mit SyntaxNet- und Word 2Vec-Modellen in ihren TensorFlow Diagrammen zu arbeiten.

Nach Abschluss dieses Kurses werden die Teilnehmer:

- Struktur und Einsatzmechanismen von TensorFlow verstehen
- in der Lage sein, Installations- / Produktionsumgebungs- / Architekturaufgaben und -konfigurationen auszuführen
- in der Lage sein, die Codequalität zu bewerten, Fehler zu beheben und zu überwachen
- in der Lage sein, fortgeschrittene Produktionsmethoden wie Trainingsmodelle, das Einbetten von Begriffen, das Erstellen von Grafiken und das Protokollieren zu implementieren
14 Stunden
Überblick
Deeplearning4j ist eine Open-Source-Bibliothek, die für Java und Scala . DL4J ist in Hadoop und Spark integriert und wurde für den Einsatz in Geschäftsumgebungen auf verteilten GPU und CPUs entwickelt.

Word 2Vec ist eine Methode , Vektordarstellungen von Worten der Berechnung von einem Team von Forschern an eingeführt Go Ogle Leitung von Tomas Mikolov.

Publikum

Dieser Kurs richtet sich an Forscher, Ingenieure und Entwickler, die mithilfe von Deeplearning4J Word 2Vec-Modelle erstellen möchten.
21 Stunden
Überblick
Deeplearning4j ist die erste kommerzielle Open-Source-Bibliothek, die für Java und Scala . DL4J ist in Hadoop und Spark integriert und wurde für den Einsatz in Geschäftsumgebungen auf verteilten GPU und CPUs entwickelt.

Publikum

Dieser Kurs richtet sich an Ingenieure und Entwickler, die Deeplearning4j in ihren Projekten einsetzen Deeplearning4j .

Nach diesem Kurs können die Teilnehmer:
21 Stunden
Überblick
SINGA ist eine allgemeine verteilte Deep-Learning-Plattform zum Trainieren großer Deep-Learning-Modelle über große Datenmengen. Es wurde mit einem intuitiven Programmiermodell entwickelt, das auf der Ebenenabstraktion basiert. Es wird eine Vielzahl gängiger Deep-Learning-Modelle unterstützt, darunter Feed-Forward-Modelle, einschließlich faltungsbezogener neuronaler Netze (CNN), Energiemodelle wie der eingeschränkten Boltzmann-Maschine (RBM) und wiederkehrender neuronaler Netze (RNN). Viele integrierte Ebenen werden für Benutzer bereitgestellt. Die SINGA-Architektur ist flexibel genug, um synchrone, asynchrone und hybride Trainings-Frameworks auszuführen. SINGA unterstützt auch verschiedene Partitionierungsschemata für neuronale Netze, um das Training großer Modelle zu parallelisieren, nämlich Partitionierung nach Batch-Dimension, Feature-Dimension oder Hybrid-Partitionierung.

Publikum

Dieser Kurs richtet sich an Forscher, Ingenieure und Entwickler, die Apache SINGA als Deep-Learning-Framework einsetzen Apache SINGA .

Nach Abschluss dieses Kurses werden die Teilnehmer:

- Verstehen der Struktur und der Bereitstellungsmechanismen von SINGA
- in der Lage sein, Installations- / Produktionsumgebungs- / Architekturaufgaben und -konfigurationen auszuführen
- in der Lage sein, die Codequalität zu bewerten, Fehler zu beheben und zu überwachen
- in der Lage sein, fortgeschrittene Produktionsmethoden wie Trainingsmodelle, das Einbetten von Begriffen, das Erstellen von Grafiken und das Protokollieren zu implementieren
21 Stunden
Überblick
Deeplearning4j ist eine Open-Source-Deep-Learning-Software für Java und Scala auf Hadoop und Spark.

Publikum

Dieser Kurs richtet sich an Ingenieure und Entwickler, die DeepLearning4J in ihren Bilderkennungsprojekten einsetzen möchten.
21 Stunden
Überblick
Caffe ist ein umfassendes Lernframework, das Ausdruck, Geschwindigkeit und Modularität berücksichtigt.

In diesem Kurs wird die Anwendung von Caffe als Deep-Learning-Framework für die Bilderkennung am Beispiel von MNIST erläutert

Publikum

Dieser Kurs eignet sich für Deep Learning Forscher und Ingenieure, die Caffe als Framework nutzen Caffe .

Nach Abschluss dieses Kurses haben die Teilnehmer folgende Möglichkeiten:

- die Struktur und die Bereitstellungsmechanismen von Caffe verstehen
- Installation / Produktionsumgebung / Architektur Aufgaben und Konfiguration durchführen
- Codequalität beurteilen, Debugging und Überwachung durchführen
- Implementieren Sie fortschrittliche Produktionsmethoden wie Schulungsmodelle, Implementieren von Ebenen und Protokollierung
21 Stunden
Überblick
Publikum

Dieser Kurs ist für Deep Learning Forscher und Ingenieure geeignet, die verfügbare Tools (meist Open Source) zur Analyse von Computerbildern verwenden möchten

Dieser Kurs enthält Arbeitsbeispiele.
14 Stunden
Überblick
Dieser Kurs behandelt KI (mit Schwerpunkt auf Machine Learning und Deep Learning ) in der Automotive . Es hilft zu bestimmen, welche Technologie (potenziell) in mehreren Situationen in einem Auto eingesetzt werden kann: von der einfachen Automatisierung über die Bilderkennung bis hin zur autonomen Entscheidungsfindung.
28 Stunden
Überblick
Dieser Kurs vermittelt Kenntnisse in neuronalen Netzen und allgemein in maschinellem Lernalgorithmus, Deep Learning (Algorithmen und Anwendungen).

Diese Schulung konzentriert sich mehr auf die Grundlagen, hilft Ihnen jedoch bei der Auswahl der richtigen Technologie: TensorFlow , Caffe , Teano, DeepDrive, Keras usw. Die Beispiele wurden in TensorFlow .
21 Stunden
Überblick
Dieser Kurs befasst sich mit KI (Schwerpunkt Machine Learning und Deep Learning )
21 Stunden
Überblick
Torch ist eine Open-Source-Bibliothek für maschinelles Lernen und ein Framework für wissenschaftliches Rechnen, das auf der Programmiersprache Lua basiert. Es bietet eine Entwicklungsumgebung für Numerik, maschinelles Lernen und Computer Vision mit besonderem Schwerpunkt auf Deep Learning und Faltungsnetzen. Es ist eine der schnellsten und flexibelsten Rahmenbedingungen für die Maschine und Deep Learning und wird von Unternehmen wie verwendet Facebook , Go Ogle, Twitter, NVIDIA, AMD, Intel, und viele andere.

In diesem von Lehrern geführten Live-Training werden die Prinzipien von Torch , seine einzigartigen Funktionen und seine Anwendung in realen Anwendungen erläutert. Wir führen durch zahlreiche praktische Übungen, demonstrieren und üben die erlernten Konzepte.

Am Ende des Kurses werden die Teilnehmer ein umfassendes Verständnis der zugrunde liegenden Funktionen und Fähigkeiten von Torch sowie seiner Rolle und seines Beitrags im KI-Raum im Vergleich zu anderen Frameworks und Bibliotheken haben. Die Teilnehmer haben auch die notwendige Übung erhalten, um Torch in ihren eigenen Projekten zu implementieren.

Format des Kurses

- Überblick über maschinelles und Deep Learning
- Codierungs- und Integrationsübungen in der Klasse
- Testfragen wurden auf dem Weg verteilt, um das Verständnis zu überprüfen
14 Stunden
Überblick
OpenNN ist eine in C ++ geschriebene Open-Source-Klassenbibliothek, die neuronale Netzwerke für maschinelles Lernen implementiert.

In diesem Kurs gehen wir auf die Prinzipien neuronaler Netzwerke ein und verwenden OpenNN, um eine Beispielanwendung zu implementieren.

Publikum
Softwareentwickler und Programmierer, die Deep-Learning-Anwendungen erstellen möchten.

Format des Kurses
Vortrag und Diskussion, begleitet von praktischen Übungen.
7 Stunden
Überblick
In diesem von Lehrern geführten Live-Training lernen die Teilnehmer, wie OpenNMT eingerichtet und verwendet OpenNMT , um die Übersetzung verschiedener Beispieldatensätze durchzuführen. Der Kurs beginnt mit einem Überblick über neuronale Netze, wie sie für die maschinelle Übersetzung gelten. Die Teilnehmer führen während des gesamten Kurses Live-Übungen durch, um ihr Verständnis der erlernten Konzepte zu demonstrieren und Feedback vom Kursleiter zu erhalten.

Am Ende dieser Schulung verfügen die Teilnehmer über das Wissen und die Praxis, um eine Live- OpenNMT Lösung zu implementieren.

Quell- und Zielsprachenbeispiele werden nach den Anforderungen des Publikums vorbestellt.

Format des Kurses

- Teilvorlesung, Teildiskussion, viel Praxis
21 Stunden
Überblick
Typ: Theoretisches Training mit Anwendungen, die vorab mit den Schülern auf Lasagne oder Keras gemäß der pädagogischen Gruppe entschieden wurden

Unterrichtsmethode: Präsentation, Austausch und Fallstudien

Künstliche Intelligenz, nachdem sie viele wissenschaftliche Bereiche gestört hatte, begann eine große Anzahl von Wirtschaftssektoren (Industrie, Medizin, Kommunikation usw.) zu revolutionieren. Nichtsdestotrotz ist seine Präsentation in den großen Medien oft eine Fantasie, weit entfernt von den eigentlichen Bereichen des Machine Learning oder des Deep Learning . Ziel dieser Schulung ist es, Ingenieuren, die bereits über Kenntnisse in Computerwerkzeugen (einschließlich Softwareprogrammierung) verfügen, eine Einführung in Deep Learning und seine verschiedenen Spezialgebiete und damit in die wichtigsten vorhandenen Netzwerkarchitekturen zu geben heute. Wenn die mathematischen Grundlagen während des Kurses abgerufen werden, wird für mehr Komfort ein Mathematikniveau vom Typ BAC + 2 empfohlen. Es ist absolut möglich, die mathematische Achse zu überspringen, um nur eine "System" -Vision zu behalten, aber dieser Ansatz wird Ihr Verständnis des Themas stark einschränken.
7 Stunden
Überblick
Fairseq ist ein von Facebok entwickeltes OpenSource Sequenzsequenz-Lern-Toolkit für den Einsatz in Neural Machine Translation (NMT) In diesem Training lernen die Teilnehmer, wie man mit Fairseq den Sample-Inhalt übersetzt Am Ende dieser Schulung haben die Teilnehmer das Wissen und die Praxis, um eine Live-basierte maschinelle Übersetzungslösung auf Fairseq-Basis zu implementieren Publikum Lokalisierungsspezialisten mit technischem Hintergrund Globale Content-Manager Lokalisierungsingenieure Softwareentwickler, die für die Implementierung globaler Content-Lösungen verantwortlich sind Format des Kurses Teilvorlesung, Teildiskussion, schwere Handson-Praxis Hinweis Wenn Sie bestimmte Inhalte in der Ausgangs- und Zielsprache verwenden möchten, kontaktieren Sie uns bitte, um dies zu arrangieren .
7 Stunden
Überblick
Die Tensor Processing Unit (TPU) ist die Architektur, die Google seit einigen Jahren intern nutzt und nun für die breite Öffentlichkeit verfügbar ist Es enthält mehrere Optimierungen speziell für die Verwendung in neuronalen Netzen, einschließlich einer gestrafften Matrixmultiplikation und 8-Bit-Ganzzahlen anstelle von 16-Bit, um geeignete Genauigkeitsniveaus zu erhalten In diesem instruierten Live-Training lernen die Teilnehmer, wie sie die Vorteile von TPU-Prozessoren nutzen können, um die Leistung ihrer eigenen KI-Anwendungen zu maximieren Am Ende des Trainings werden die Teilnehmer in der Lage sein: Trainieren Sie verschiedene Arten von neuronalen Netzwerken auf großen Datenmengen Verwenden Sie TPUs, um den Inferenzprozess um bis zu zwei Größenordnungen zu beschleunigen Verwenden Sie TPUs, um intensive Anwendungen wie Bildsuche, Cloud Vision und Fotos zu verarbeiten Publikum Entwickler Forscher Ingenieure Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
21 Stunden
Überblick
Microsoft Cognitive Toolkit 2x (früher CNTK) ist ein Open Source-Toolkit für den kommerziellen Einsatz, das tiefgreifende Lernalgorithmen zum Lernen wie das menschliche Gehirn trainiert Laut Microsoft kann CNTK 510x schneller als TensorFlow in wiederkehrenden Netzwerken und 2- bis 3-mal schneller als TensorFlow für bildbezogene Tasks sein In diesem instruierten Live-Training lernen die Teilnehmer, wie sie mithilfe von Microsoft Cognitive Toolkit tiefgreifende Lernalgorithmen für kommerzielle AI-Anwendungen erstellen, trainieren und auswerten, die verschiedene Arten von Daten wie Daten, Sprache, Text und Bilder umfassen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Greifen Sie aus einem Python-, C # - oder C ++ - Programm heraus auf CNTK als Bibliothek zu Nutzen Sie CNTK als eigenständiges Machine Learning Tool durch eine eigene Modellbeschreibungssprache (BrainScript) Verwenden Sie die CNTK-Modellbewertungsfunktionalität aus einem Java-Programm Kombinieren von Feedforward-DNNs, Faltungsnetzwerken (CNNs) und wiederkehrenden Netzwerken (RNNs / LSTMs) Skalieren Sie die Rechenkapazität für CPUs, GPUs und mehrere Maschinen Greifen Sie auf riesige Datensätze mit vorhandenen Programmiersprachen und Algorithmen zu Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen Hinweis Wenn Sie einen Teil dieses Trainings anpassen möchten, einschließlich der Programmiersprache Ihrer Wahl, kontaktieren Sie uns bitte, um dies zu arrangieren .
21 Stunden
Überblick
PaddlePaddle (PArallel Distributed Deep LEarning) ist eine von Baidu entwickelte skalierbare Deep-Learning-Plattform In diesem instruierten Live-Training lernen die Teilnehmer, PaddlePaddle zu verwenden, um tiefes Lernen in ihren Produkt- und Serviceanwendungen zu ermöglichen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Richten Sie PaddlePaddle ein und konfigurieren Sie es Richten Sie ein Convolutional Neural Network (CNN) für die Bilderkennung und Objekterkennung ein Richten Sie ein Recurrent Neural Network (RNN) für die Stimmungsanalyse ein Richten Sie Deep Learning auf Empfehlungssystemen ein, damit Benutzer Antworten finden können Klickraten (Click-through-Rate - CTR) vorhersagen, großformatige Bildsätze klassifizieren, optische Zeichenerkennung (OCR) durchführen, Suchanfragen einordnen, Computerviren erkennen und ein Empfehlungssystem implementieren Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
7 Stunden
Überblick
In diesem von Lehrern geleiteten Live-Training lernen die Teilnehmer, wie sie mit DSSTNE eine Empfehlungsanwendung erstellen.

Am Ende dieser Schulung können die Teilnehmer:

- Trainieren Sie ein Empfehlungsmodell mit spärlichen Datensätzen als Eingabe
- Skalieren Sie Trainings- und Vorhersagemodelle über mehrere GPU
- Verteilen Sie die Berechnung und Speicherung modellparallel
- Generieren Sie Amazon-ähnliche, personalisierte Produktempfehlungen
- Stellen Sie eine produktionsbereite Anwendung bereit, die bei hoher Auslastung skaliert werden kann

Format des Kurses

- Teilvorlesung, Teildiskussion, Übungen und viel praktisches Üben
7 Stunden
Überblick
Tensor2Tensor (T2T) ist eine modulare, erweiterbare Bibliothek zum Trainieren von KI-Modellen in verschiedenen Aufgaben, wobei verschiedene Arten von Trainingsdaten verwendet werden, z B: Bilderkennung, Übersetzung, Parsing, Bildunterschrift und Spracherkennung Es wird vom Google Brain-Team verwaltet In diesem instruierten Live-Training lernen die Teilnehmer, wie sie ein Deeplearning-Modell vorbereiten können, um mehrere Aufgaben zu lösen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Installieren Sie tensor2tensor, wählen Sie einen Datensatz aus und trainieren und bewerten Sie ein AI-Modell Passen Sie eine Entwicklungsumgebung mit den Tools und Komponenten von Tensor2Tensor an Erstellen und verwenden Sie ein einzelnes Modell, um gleichzeitig eine Reihe von Aufgaben aus mehreren Domänen zu lernen Verwenden Sie das Modell, um aus Aufgaben mit einer großen Menge an Trainingsdaten zu lernen, und wenden Sie dieses Wissen auf Aufgaben an, bei denen Daten begrenzt sind Erzielen Sie zufriedenstellende Verarbeitungsergebnisse mit einer einzelnen GPU Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
14 Stunden
Überblick
Embedding Projector ist eine Open-Source-Webanwendung zur Visualisierung der Daten, die zum Trainieren von maschinellen Lernsystemen verwendet werden Erstellt von Google, ist es ein Teil von TensorFlow Dieses instruierte Live-Training stellt die Konzepte hinter Embedding Projector vor und führt die Teilnehmer durch die Einrichtung eines Demo-Projekts Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Erfahren Sie, wie Daten von maschinellen Lernmodellen interpretiert werden Navigieren Sie durch 3D- und 2D-Ansichten von Daten, um zu verstehen, wie ein maschineller Lernalgorithmus sie interpretiert Verstehen Sie die Konzepte hinter Embedding und ihre Rolle bei der Darstellung mathematischer Vektoren für Bilder, Wörter und Zahlen Erkunden Sie die Eigenschaften einer bestimmten Einbettung, um das Verhalten eines Modells zu verstehen Wenden Sie Embedding Project auf reale Anwendungsfälle an, wie zum Beispiel das Erstellen eines Song-Empfehlungssystems für Musikliebhaber Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
14 Stunden
Überblick
OpenFace ist Python und Torch-basierte Echtzeit-Gesichtserkennungssoftware, die auf der FaceNet-Forschung von Google basiert In diesem instruierten Live-Training lernen die Teilnehmer, wie sie mithilfe der OpenFace-Komponenten eine Musteranwendung für die Gesichtserkennung erstellen und bereitstellen können Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Arbeiten Sie mit OpenFace-Komponenten, einschließlich dlib, OpenVC, Torch und nn4, um Gesichtserkennung, Ausrichtung und Transformation zu implementieren Wenden Sie OpenFace auf Realworld-Anwendungen wie Überwachung, Identitätsüberprüfung, Virtual Reality, Spiele und Identifizierung von Stammkunden usw an Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
21 Stunden
Überblick
In diesem instruierten Live-Training lernen die Teilnehmer die relevantesten und fortschrittlichsten maschinellen Lerntechniken in Python kennen, während sie eine Reihe von Demo-Anwendungen mit Bild-, Musik-, Text- und Finanzdaten erstellen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Implementieren Sie maschinelle Lernalgorithmen und Techniken zur Lösung komplexer Probleme Wenden Sie intensives Lernen und halbüberwachtes Lernen auf Anwendungen mit Bild-, Musik-, Text- und Finanzdaten an Push Python-Algorithmen auf ihr maximales Potenzial Verwenden Sie Bibliotheken und Pakete wie NumPy und Theano Publikum Entwickler Analysten Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
21 Stunden
Überblick
In diesem instruierten Live-Training erlernen die Teilnehmer fortgeschrittene Techniken für Maschinelles Lernen mit R, während sie eine Realworld-Anwendung erstellen Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Verwenden Sie Techniken wie Hyperparameter-Tuning und Deep Learning Unüberwachte Lerntechniken verstehen und implementieren Erstellen Sie ein Modell für die Verwendung in einer größeren Anwendung Publikum Entwickler Analysten Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .
7 Stunden
Überblick
TensorFlow Serving ist ein System, mit dem Machine-Learning-Modelle (ML) in der Produktion eingesetzt werden können In diesem instruierten Live-Training lernen die Teilnehmer, wie sie TensorFlow Serving konfigurieren und einsetzen, um ML-Modelle in einer Produktionsumgebung bereitzustellen und zu verwalten Am Ende dieses Trainings werden die Teilnehmer in der Lage sein: Trainieren, exportieren und bedienen Sie verschiedene TensorFlow-Modelle Testen und implementieren Sie Algorithmen mithilfe einer einzigen Architektur und einer Reihe von APIs Erweitern Sie TensorFlow Serving, um andere Arten von Modellen als TensorFlow-Modelle zu bedienen Publikum Entwickler Datenwissenschaftler Format des Kurses Teilvorlesung, Teildiskussion, Übungen und schwere Handsonsübungen .

Zukünftige Deep Learning Kurse

Deep Learning (DL) Schulung, Deep Learning boot camp, Deep Learning Abendkurse, Deep Learning Wochenendkurse, Deep Learning (DL) Kurs, Deep Learning Training, Deep Learning (DL) Seminar, DL (Deep Learning) Seminare, Deep Learning (DL) Privatkurs, Deep Learning Coaching, Deep Learning (DL) Lehrer

Sonderangebote

Sonderangebote Newsletter

We respect the privacy of your email address. We will not pass on or sell your address to others.
You can always change your preferences or unsubscribe completely.

EINIGE UNSERER KUNDEN

is growing fast!

We are looking for a good mixture of IT and soft skills in Germany!

As a NobleProg Trainer you will be responsible for:

  • delivering training and consultancy Worldwide
  • preparing training materials
  • creating new courses outlines
  • delivering consultancy
  • quality management

At the moment we are focusing on the following areas:

  • Statistic, Forecasting, Big Data Analysis, Data Mining, Evolution Alogrithm, Natural Language Processing, Machine Learning (recommender system, neural networks .etc...)
  • SOA, BPM, BPMN
  • Hibernate/Spring, Scala, Spark, jBPM, Drools
  • R, Python
  • Mobile Development (iOS, Android)
  • LAMP, Drupal, Mediawiki, Symfony, MEAN, jQuery
  • You need to have patience and ability to explain to non-technical people

To apply, please create your trainer-profile by going to the link below:

Apply now!

This site in other countries/regions