The topic is very interesting

*Wojciech Baranowski - Dolby Poland Sp. z o.o.*

Deep machine learning, deep structured learning, hierarchical learning, DL courses

Code | Name | Dauer | Übersicht |
---|---|---|---|

tpuprogramming | TPU Programming: Building Neural Network Applications on Tensor Processing Units | 7 hours | The Tensor Processing Unit (TPU) is the architecture which Google has used internally for several years, and is just now becoming available for use by the general public. It includes several optimizations specifically for use in neural networks, including streamlined matrix multiplication, and 8-bit integers instead of 16-bit in order to return appropriate levels of precision. In this instructor-led, live training, participants will learn how to take advantage of the innovations in TPU processors to maximize the performance of their own AI applications. By the end of the training, participants will be able to: Train various types of neural networks on large amounts of data Use TPUs to speed up the inference process by up to two orders of magnitude Utilize TPUs to process intensive applications such as image search, cloud vision and photos Audience Developers Researchers Engineers Data scientists Format of the course Part lecture, part discussion, exercises and heavy hands-on practice To request a customized course outline for this training, please contact us. |

tfir | TensorFlow for Image Recognition | 28 hours | This course explores, with specific examples, the application of Tensor Flow to the purposes of image recognition Audience This course is intended for engineers seeking to utilize TensorFlow for the purposes of Image Recognition After completing this course, delegates will be able to: understand TensorFlow’s structure and deployment mechanisms carry out installation / production environment / architecture tasks and configuration assess code quality, perform debugging, monitoring implement advanced production like training models, building graphs and logging Machine Learning and Recursive Neural Networks (RNN) basics NN and RNN Backprogation Long short-term memory (LSTM) TensorFlow Basics Creation, Initializing, Saving, and Restoring TensorFlow variables Feeding, Reading and Preloading TensorFlow Data How to use TensorFlow infrastructure to train models at scale Visualizing and Evaluating models with TensorBoard TensorFlow Mechanics 101 Tutorial Files Prepare the Data Download Inputs and Placeholders Build the Graph Inference Loss Training Train the Model The Graph The Session Train Loop Evaluate the Model Build the Eval Graph Eval Output Advanced Usage Threading and Queues Distributed TensorFlow Writing Documentation and Sharing your Model Customizing Data Readers Using GPUs¹ Manipulating TensorFlow Model Files TensorFlow Serving Introduction Basic Serving Tutorial Advanced Serving Tutorial Serving Inception Model Tutorial Convolutional Neural Networks Overview Goals Highlights of the Tutorial Model Architecture Code Organization CIFAR-10 Model Model Inputs Model Prediction Model Training Launching and Training the Model Evaluating a Model Training a Model Using Multiple GPU Cards¹ Placing Variables and Operations on Devices Launching and Training the Model on Multiple GPU cards Deep Learning for MNIST Setup Load MNIST Data Start TensorFlow InteractiveSession Build a Softmax Regression Model Placeholders Variables Predicted Class and Cost Function Train the Model Evaluate the Model Build a Multilayer Convolutional Network Weight Initialization Convolution and Pooling First Convolutional Layer Second Convolutional Layer Densely Connected Layer Readout Layer Train and Evaluate the Model Image Recognition Inception-v3 C++ Java ¹ Topics related to the use of GPUs are not available as a part of a remote course. They can be delivered during classroom-based courses, but only by prior agreement, and only if both the trainer and all participants have laptops with supported NVIDIA GPUs, with 64-bit Linux installed (not provided by NobleProg). NobleProg cannot guarantee the availability of trainers with the required hardware. |

tsflw2v | Natural Language Processing with TensorFlow | 35 hours | TensorFlow™ is an open source software library for numerical computation using data flow graphs. SyntaxNet is a neural-network Natural Language Processing framework for TensorFlow. Word2Vec is used for learning vector representations of words, called "word embeddings". Word2vec is a particularly computationally-efficient predictive model for learning word embeddings from raw text. It comes in two flavors, the Continuous Bag-of-Words model (CBOW) and the Skip-Gram model (Chapter 3.1 and 3.2 in Mikolov et al.). Used in tandem, SyntaxNet and Word2Vec allows users to generate Learned Embedding models from Natural Language input. Audience This course is targeted at Developers and engineers who intend to work with SyntaxNet and Word2Vec models in their TensorFlow graphs. After completing this course, delegates will: understand TensorFlow’s structure and deployment mechanisms be able to carry out installation / production environment / architecture tasks and configuration be able to assess code quality, perform debugging, monitoring be able to implement advanced production like training models, embedding terms, building graphs and logging Getting Started Setup and Installation TensorFlow Basics Creation, Initializing, Saving, and Restoring TensorFlow variables Feeding, Reading and Preloading TensorFlow Data How to use TensorFlow infrastructure to train models at scale Visualizing and Evaluating models with TensorBoard TensorFlow Mechanics 101 Prepare the Data Download Inputs and Placeholders Build the Graph Inference Loss Training Train the Model The Graph The Session Train Loop Evaluate the Model Build the Eval Graph Eval Output Advanced Usage Threading and Queues Distributed TensorFlow Writing Documentation and Sharing your Model Customizing Data Readers Using GPUs Manipulating TensorFlow Model Files TensorFlow Serving Introduction Basic Serving Tutorial Advanced Serving Tutorial Serving Inception Model Tutorial Getting Started with SyntaxNet Parsing from Standard Input Annotating a Corpus Configuring the Python Scripts Building an NLP Pipeline with SyntaxNet Obtaining Data Part-of-Speech Tagging Training the SyntaxNet POS Tagger Preprocessing with the Tagger Dependency Parsing: Transition-Based Parsing Training a Parser Step 1: Local Pretraining Training a Parser Step 2: Global Training Vector Representations of Words Motivation: Why Learn word embeddings? Scaling up with Noise-Contrastive Training The Skip-gram Model Building the Graph Training the Model Visualizing the Learned Embeddings Evaluating Embeddings: Analogical Reasoning Optimizing the Implementation |

w2vdl4j | NLP with Deeplearning4j | 14 hours | Deeplearning4j is an open-source, distributed deep-learning library written for Java and Scala. Integrated with Hadoop and Spark, DL4J is designed to be used in business environments on distributed GPUs and CPUs. Word2Vec is a method of computing vector representations of words introduced by a team of researchers at Google led by Tomas Mikolov. Audience This course is directed at researchers, engineers and developers seeking to utilize Deeplearning4J to construct Word2Vec models. Getting Started DL4J Examples in a Few Easy Steps Using DL4J In Your Own Projects: Configuring the POM.xml File Word2Vec Introduction Neural Word Embeddings Amusing Word2vec Results the Code Anatomy of Word2Vec Setup, Load and Train A Code Example Troubleshooting & Tuning Word2Vec Word2vec Use Cases Foreign Languages GloVe (Global Vectors) & Doc2Vec |

dl4jir | DeepLearning4J for Image Recognition | 21 hours | Deeplearning4j is an Open-Source Deep-Learning Software for Java and Scala on Hadoop and Spark. Audience This course is meant for engineers and developers seeking to utilize DeepLearning4J in their image recognition projects. Getting Started Quickstart: Running Examples and DL4J in Your Projects Comprehensive Setup Guide Convolutional Neural Networks Convolutional Net Introduction Images Are 4-D Tensors? ConvNet Definition How Convolutional Nets Work Maxpooling/Downsampling DL4J Code Sample Other Resources Datasets Datasets and Machine Learning Custom Datasets CSV Data Uploads Scaleout Iterative Reduce Defined Multiprocessor / Clustering Running Worker Nodes Advanced DL2J Build Locally From Master Use the Maven Build Tool Vectorize Data With Canova Build a Data Pipeline Run Benchmarks Configure DL4J in Ivy, Gradle, SBT etc Find a DL4J Class or Method Save and Load Models Interpret Neural Net Output Visualize Data with t-SNE Swap CPUs for GPUs Customize an Image Pipeline Perform Regression With Neural Nets Troubleshoot Training & Select Network Hyperparameters Visualize, Monitor and Debug Network Learning Speed Up Spark With Native Binaries Build a Recommendation Engine With DL4J Use Recurrent Networks in DL4J Build Complex Network Architectures with Computation Graph Train Networks using Early Stopping Download Snapshots With Maven Customize a Loss Function |

dlv | Deep Learning for Vision | 21 hours | Audience This course is suitable for Deep Learning researchers and engineers interested in utilizing available tools (mostly open source ) for analyzing computer images This course provide working examples. Deep Learning vs Machine Learning vs Other Methods When Deep Learning is suitable Limits of Deep Learning Comparing accuracy and cost of different methods Methods Overview Nets and Layers Forward / Backward: the essential computations of layered compositional models. Loss: the task to be learned is defined by the loss. Solver: the solver coordinates model optimization. Layer Catalogue: the layer is the fundamental unit of modeling and computation Convolution Methods and models Backprop, modular models Logsum module RBF Net MAP/MLE loss Parameter Space Transforms Convolutional Module Gradient-Based Learning Energy for inference, Objective for learning PCA; NLL: Latent Variable Models Probabilistic LVM Loss Function Detection with Fast R-CNN Sequences with LSTMs and Vision + Language with LRCN Pixelwise prediction with FCNs Framework design and future Tools Caffe Tensorflow R Matlab Others... |

caffe | Deep Learning for Vision with Caffe | 21 hours | Caffe is a deep learning framework made with expression, speed, and modularity in mind. This course explores the application of Caffe as a Deep learning framework for image recognition using MNIST as an example Audience This course is suitable for Deep Learning researchers and engineers interested in utilizing Caffe as a framework. After completing this course, delegates will be able to: understand Caffe’s structure and deployment mechanisms carry out installation / production environment / architecture tasks and configuration assess code quality, perform debugging, monitoring implement advanced production like training models, implementing layers and logging Installation Docker Ubuntu RHEL / CentOS / Fedora installation Windows Caffe Overview Nets, Layers, and Blobs: the anatomy of a Caffe model. Forward / Backward: the essential computations of layered compositional models. Loss: the task to be learned is defined by the loss. Solver: the solver coordinates model optimization. Layer Catalogue: the layer is the fundamental unit of modeling and computation – Caffe’s catalogue includes layers for state-of-the-art models. Interfaces: command line, Python, and MATLAB Caffe. Data: how to caffeinate data for model input. Caffeinated Convolution: how Caffe computes convolutions. New models and new code Detection with Fast R-CNN Sequences with LSTMs and Vision + Language with LRCN Pixelwise prediction with FCNs Framework design and future Examples: MNIST |

Neuralnettf | Neural Networks Fundamentals using TensorFlow as Example | 28 hours | This course will give you knowledge in neural networks and generally in machine learning algorithm, deep learning (algorithms and applications). This training is more focus on fundamentals, but will help you choosing the right technology : TensorFlow, Caffe, Teano, DeepDrive, Keras, etc. The examples are made in TensorFlow. TensorFlow Basics Creation, Initializing, Saving, and Restoring TensorFlow variables Feeding, Reading and Preloading TensorFlow Data How to use TensorFlow infrastructure to train models at scale Visualizing and Evaluating models with TensorBoard TensorFlow Mechanics Inputs and Placeholders Build the GraphS Inference Loss Training Train the Model The Graph The Session Train Loop Evaluate the Model Build the Eval Graph Eval Output The Perceptron Activation functions The perceptron learning algorithm Binary classification with the perceptron Document classification with the perceptron Limitations of the perceptron From the Perceptron to Support Vector Machines Kernels and the kernel trick Maximum margin classification and support vectors Artificial Neural Networks Nonlinear decision boundaries Feedforward and feedback artificial neural networks Multilayer perceptrons Minimizing the cost function Forward propagation Back propagation Improving the way neural networks learn Convolutional Neural Networks Goals Model Architecture Principles Code Organization Launching and Training the Model Evaluating a Model |

MicrosoftCognitiveToolkit | Microsoft Cognitive Toolkit 2.x | 21 hours | Microsoft Cognitive Toolkit 2.x (previously CNTK) is an open-source, commercial-grade toolkit that trains deep learning algorithms to learn like the human brain. According to Microsoft, CNTK can be 5-10x faster than TensorFlow on recurrent networks, and 2 to 3 times faster than TensorFlow for image-related tasks. In this instructor-led, live training, participants will learn how to use Microsoft Cognitive Toolkit to create, train and evaluate deep learning algorithms for use in commercial-grade AI applications involving multiple types of data such data, speech, text, and images. By the end of this training, participants will be able to: Access CNTK as a library from within a Python, C#, or C++ program Use CNTK as a standalone machine learning tool through its own model description language (BrainScript) Use the CNTK model evaluation functionality from a Java program Combine feed-forward DNNs, convolutional nets (CNNs), and recurrent networks (RNNs/LSTMs) Scale computation capacity on CPUs, GPUs and multiple machines Access massive datasets using existing programming languages and algorithms Audience Developers Data scientists Format of the course Part lecture, part discussion, exercises and heavy hands-on practice Note If you wish to customize any part of this training, including the programming language of choice, please contact us to arrange. To request a customized course outline for this training, please contact us. |

Torch | Torch: Getting started with Machine and Deep Learning | 21 hours | Torch is an open source machine learning library and a scientific computing framework based on the Lua programming language. It provides a development environment for numerics, machine learning, and computer vision, with a particular emphasis on deep learning and convolutional nets. It is one of the fastest and most flexible frameworks for Machine and Deep Learning and is used by companies such as Facebook, Google, Twitter, NVIDIA, AMD, Intel, and many others. In this course we cover the principles of Torch, its unique features, and how it can be applied in real-world applications. We step through numerous hands-on exercises all throughout, demonstrating and practicing the concepts learned. By the end of the course, participants will have a thorough understanding of Torch's underlying features and capabilities as well as its role and contribution within the AI space compared to other frameworks and libraries. Participants will have also received the necessary practice to implement Torch in their own projects. Audience Software developers and programmers wishing to enable Machine and Deep Learning within their applications Format of the course Overview of Machine and Deep Learning In-class coding and integration exercises Test questions sprinkled along the way to check understanding Introduction to Torch Like NumPy but with CPU and GPU implementation Torch's usage in machine learning, computer vision, signal processing, parallel processing, image, video, audio and networking Installing Torch Linux, Windows, Mac Bitmapi and Docker Installing Torch packages Using the LuaRocks package manager Choosing an IDE for Torch ZeroBrane Studio Eclipse plugin for Lua Working with the Lua scripting language and LuaJIT Lua's integration with C/C++ Lua syntax: datatypes, loops and conditionals, functions, functions, tables, and file i/o. Object orientation and serialization in Torch Coding exercise Loading a dataset in Torch MNIST CIFAR-10, CIFAR-100 Imagenet Machine Learning in Torch Deep Learning Manual feature extraction vs convolutional networks Supervised and Unsupervised Learning Building a neural network with Torch N-dimensional arrays Image analysis with Torch Image package The Tensor library Working with the REPL interpreter Working with databases Networking and Torch GPU support in Torch Integrating Torch C, Python, and others Embedding Torch iOS and Android Other frameworks and libraries Facebook's optimized deep-learning modules and containers Creating your own package Testing and debugging Releasing your application The future of AI and Torch |

OpenNN | OpenNN: Implementing neural networks | 14 hours | OpenNN is an open-source class library written in C++ which implements neural networks, for use in machine learning. In this course we go over the principles of neural networks and use OpenNN to implement a sample application. Audience Software developers and programmers wishing to create Deep Learning applications. Format of the course Lecture and discussion coupled with hands-on exercises. Introduction to OpenNN, Machine Learning and Deep Learning Downloading OpenNN Working with Neural Designer Using Neural Designer for descriptive, diagnostic, predictive and prescriptive analytics OpenNN architecture CPU parallelization OpenNN classes Data set, neural network, loss index, training strategy, model selection, testing analysis Vector and matrix templates Building a neural network application Choosing a suitable neural network Formulating the variational problem (loss index) Solving the reduced function optimization problem (training strategy) Working with datasets The data matrix (columns as variables and rows as instances) Learning tasks Function regression Pattern recognition Compiling with QT Creator Integrating, testing and debugging your application The future of neural networks and OpenNN |

datamodeling | Pattern Recognition | 35 hours | This course provides an introduction into the field of pattern recognition and machine learning. It touches on practical applications in statistics, computer science, signal processing, computer vision, data mining, and bioinformatics. The course is interactive and includes plenty of hands-on exercises, instructor feedback, and testing of knowledge and skills acquired. Audience Data analysts PhD students, researchers and practitioners Introduction Probability theory, model selection, decision and information theory Probability distributions Linear models for regression and classification Neural networks Kernel methods Sparse kernel machines Graphical models Mixture models and EM Approximate inference Sampling methods Continuous latent variables Sequential data Combining models |

mldt | Machine Learning and Deep Learning | 21 hours | This course covers AI (emphasizing Machine Learning and Deep Learning) Machine learning Introduction to Machine Learning Applications of machine learning Supervised Versus Unsupervised Learning Machine Learning Algorithms Regression Classification Clustering Recommender System Anomaly Detection Reinforcement Learning Regression Simple & Multiple Regression Least Square Method Estimating the Coefficients Assessing the Accuracy of the Coefficient Estimates Assessing the Accuracy of the Model Post Estimation Analysis Other Considerations in the Regression Models Qualitative Predictors Extensions of the Linear Models Potential Problems Bias-variance trade off [under-fitting/over-fitting] for regression models Resampling Methods Cross-Validation The Validation Set Approach Leave-One-Out Cross-Validation k-Fold Cross-Validation Bias-Variance Trade-Off for k-Fold The Bootstrap Model Selection and Regularization Subset Selection [Best Subset Selection, Stepwise Selection, Choosing the Optimal Model] Shrinkage Methods/ Regularization [Ridge Regression, Lasso & Elastic Net] Selecting the Tuning Parameter Dimension Reduction Methods Principal Components Regression Partial Least Squares Classification Logistic Regression The Logistic Model cost function Estimating the Coefficients Making Predictions Odds Ratio Performance Evaluation Matrices [Sensitivity/Specificity/PPV/NPV, Precision, ROC curve etc.] Multiple Logistic Regression Logistic Regression for >2 Response Classes Regularized Logistic Regression Linear Discriminant Analysis Using Bayes’ Theorem for Classification Linear Discriminant Analysis for p=1 Linear Discriminant Analysis for p >1 Quadratic Discriminant Analysis K-Nearest Neighbors Classification with Non-linear Decision Boundaries Support Vector Machines Optimization Objective The Maximal Margin Classifier Kernels One-Versus-One Classification One-Versus-All Classification Comparison of Classification Methods Introduction to Deep Learning ANN Structure Biological neurons and artificial neurons Non-linear Hypothesis Model Representation Examples & Intuitions Transfer Function/ Activation Functions Typical classes of network architectures Feed forward ANN. Structures of Multi-layer feed forward networks Back propagation algorithm Back propagation - training and convergence Functional approximation with back propagation Practical and design issues of back propagation learning Deep Learning Artificial Intelligence & Deep Learning Softmax Regression Self-Taught Learning Deep Networks Demos and Applications Lab: Getting Started with R Introduction to R Basic Commands & Libraries Data Manipulation Importing & Exporting data Graphical and Numerical Summaries Writing functions Regression Simple & Multiple Linear Regression Interaction Terms Non-linear Transformations Dummy variable regression Cross-Validation and the Bootstrap Subset selection methods Penalization [Ridge, Lasso, Elastic Net] Classification Logistic Regression, LDA, QDA, and KNN, Resampling & Regularization Support Vector Machine Resampling & Regularization Note: For ML algorithms, case studies will be used to discuss their application, advantages & potential issues. Analysis of different data sets will be performed using R |

deeplearning1 | Introduction to Deep Learning | 21 hours | This course is general overview for Deep Learning without going too deep into any specific methods. It is suitable for people who want to start using Deep learning to enhance their accuracy of prediction. Backprop, modular models Logsum module RBF Net MAP/MLE loss Parameter Space Transforms Convolutional Module Gradient-Based Learning Energy for inference, Objective for learning PCA; NLL: Latent Variable Models Probabilistic LVM Loss Function Handwriting recognition |

Fairseq | Fairseq: Setting up a CNN-based machine translation system | 7 hours | Fairseq is an open-source sequence-to-sequence learning toolkit created by Facebok for use in Neural Machine Translation (NMT). In this training participants will learn how to use Fairseq to carry out translation of sample content. By the end of this training, participants will have the knowledge and practice needed to implement a live Fairseq based machine translation solution. Source and target language content samples can be prepared according to audience's requirements. Audience Localization specialists with a technical background Global content managers Localization engineers Software developers in charge of implementing global content solutions Format of the course Part lecture, part discussion, heavy hands-on practice Introduction Why Neural Machine Translation? Overview of the Torch project Overview of a Convolutional Neural Machine Translation model Convolutional Sequence to Sequence Learning Convolutional Encoder Model for Neural Machine Translation Standard LSTM-based model Overview of training approaches About GPUs and CPUs Fast beam search generation Installation and setup Evaluating pre-trained models Preprocessing your data Training the model Translating Converting a trained model to use CPU-only operations Joining to the community Closing remarks |

dladv | Advanced Deep Learning | 28 hours | Machine Learning Limitations Machine Learning, Non-linear mappings Neural Networks Non-Linear Optimization, Stochastic/MiniBatch Gradient Decent Back Propagation Deep Sparse Coding Sparse Autoencoders (SAE) Convolutional Neural Networks (CNNs) Successes: Descriptor Matching Stereo-based Obstacle Avoidance for Robotics Pooling and invariance Visualization/Deconvolutional Networks Recurrent Neural Networks (RNNs) and their optimizaiton Applications to NLP RNNs continued, Hessian-Free Optimization Language analysis: word/sentence vectors, parsing, sentiment analysis, etc. Probabilistic Graphical Models Hopfield Nets, Boltzmann machines, Restricted Boltzmann Machines Hopfield Networks, (Restricted) Bolzmann Machines Deep Belief Nets, Stacked RBMs Applications to NLP , Pose and Activity Recognition in Videos Recent Advances Large-Scale Learning Neural Turing Machines |

tf101 | Deep Learning with TensorFlow | 21 hours | TensorFlow is a 2nd Generation API of Google's open source software library for Deep Learning. The system is designed to facilitate research in machine learning, and to make it quick and easy to transition from research prototype to production system. Audience This course is intended for engineers seeking to use TensorFlow for their Deep Learning projects After completing this course, delegates will: understand TensorFlow’s structure and deployment mechanisms be able to carry out installation / production environment / architecture tasks and configuration be able to assess code quality, perform debugging, monitoring be able to implement advanced production like training models, building graphs and logging Machine Learning and Recursive Neural Networks (RNN) basics NN and RNN Backprogation Long short-term memory (LSTM) TensorFlow Basics Creation, Initializing, Saving, and Restoring TensorFlow variables Feeding, Reading and Preloading TensorFlow Data How to use TensorFlow infrastructure to train models at scale Visualizing and Evaluating models with TensorBoard TensorFlow Mechanics 101 Prepare the Data Download Inputs and Placeholders Build the Graph Inference Loss Training Train the Model The Graph The Session Train Loop Evaluate the Model Build the Eval Graph Eval Output Advanced Usage Threading and Queues Distributed TensorFlow Writing Documentation and Sharing your Model Customizing Data Readers Using GPUs¹ Manipulating TensorFlow Model Files TensorFlow Serving Introduction Basic Serving Tutorial Advanced Serving Tutorial Serving Inception Model Tutorial ¹ The Advanced Usage topic, “Using GPUs”, is not available as a part of a remote course. This module can be delivered during classroom-based courses, but only by prior agreement, and only if both the trainer and all participants have laptops with supported NVIDIA GPUs, with 64-bit Linux installed (not provided by NobleProg). NobleProg cannot guarantee the availability of trainers with the required hardware. |

facebooknmt | Facebook NMT: Setting up a neural machine translation system | 7 hours | Fairseq is an open-source sequence-to-sequence learning toolkit created by Facebok for use in Neural Machine Translation (NMT). In this training participants will learn how to use Fairseq to carry out translation of sample content. By the end of this training, participants will have the knowledge and practice needed to implement a live Fairseq based machine translation solution. Audience Localization specialists with a technical background Global content managers Localization engineers Software developers in charge of implementing global content solutions Format of the course Part lecture, part discussion, heavy hands-on practice Note If you wish to use specific source and target language content, please contact us to arrange. Introduction Why Neural Machine Translation? Borrowing from image recognition techniques Overview of the Torch and Caffe2 projects Overview of a Convolutional Neural Machine Translation model Convolutional Sequence to Sequence Learning Convolutional Encoder Model for Neural Machine Translation Standard LSTM-based model Overview of training approaches About GPUs and CPUs Fast beam search generation Installation and setup Evaluating pre-trained models Preprocessing your data Training the model Translating Converting a trained model to use CPU-only operations Joining to the community Closing remarks |

Course | Ort | Schulungsdatum | Kurspreis (Fernkurs / Schulungsraum) |
---|---|---|---|

Effektive Kommunikationsfähigkeiten | München | Mi, 2017-10-11 09:30 | 2703EUR / 3353EUR |

Grundkenntnisse für Manager (vom Supervisor zum Manager) | Berlin | Mo, 2017-10-16 09:30 | 3643EUR / 4643EUR |

Big Data Business Intelligence for Govt. Agencies | Düsseldorf | Mo, 2017-10-16 09:30 | 6282EUR / 7082EUR |

Big Data Business Intelligence for Telecom & Communication Service Providers | Hamburg | Mo, 2017-11-20 09:30 | 6174EUR / 7124EUR |

UML 2.0 Certification - Advanced Exam Preparation | Köln | Do, 2017-12-21 09:30 | 1872EUR / 2372EUR |

Marktprognose | Hannover | Mi, 2018-02-14 09:30 | 1872EUR / 2372EUR |