Schulungsübersicht

Einführung

  • Maschinelles Lernen mit SageMaker verstehen
  • Algorithmen für maschinelles Lernen

Überblick über die Funktionen von AWS SageMaker

  • AWS und Cloud Computing
  • Entwicklung von Modellen

Einrichten von AWS SageMaker

  • Erstellen eines AWS-Kontos
  • IAM-Admin-Benutzer und -Gruppe

Vertrautmachen mit SageMaker Studio

  • UI-Übersicht
  • Studio-Notebooks

Aufbereitung von Daten mit Jupyter Notebooks

  • Notebooks und Bibliotheken
  • Erstellen einer Notizbuchinstanz

Trainieren eines Modells mit SageMaker

  • Trainingsaufträge und Algorithmen
  • Paralleles Trainieren von Daten und Modellen
  • Analyse der Verzerrungen nach dem Training

Einsetzen eines Modells in SageMaker

  • Modellregistrierung und Modellmonitor
  • Kompilieren und Einsetzen von Modellen mit Neo
  • Evaluierung der Modellleistung

Aufräumen von Ressourcen

  • Löschen von Endpunkten
  • Löschen von Notebook-Instanzen

Fehlersuche

Zusammenfassung und Fazit

Voraussetzungen

  • Erfahrung mit Anwendungsentwicklung
  • Vertrautheit mit der Amazon Web Services (AWS)-Konsole

Zielgruppe

  • Datenwissenschaftler
  • Entwickler
 21 Stunden

Teilnehmerzahl


Price per participant (excl. VAT)

Erfahrungsberichte (3)

Kommende Kurse